ON A SIMPLE INTEGRAL REPRESENTATION
OF THE CONTINUOUS q-HERMITE POLYNOMIALS †

Natig M. Atakishiyev 1, Mesuma K. Atakishiyeva 2

Abstract

We derive a simple integral representation and the corresponding Rodrigues type difference formula for the continuous q-Hermite polynomials of Rogers. As a consequence, this also yields the appropriate formulae for the Rogers–Szegő and Stieltjes–Wigert polynomials.

Mathematics Subject Classification: 26C15, 33D10, 44A20

Key Words and Phrases: classical special functions, the continuous q-Hermite polynomials of Rogers, integral representation, Rodrigues type difference formula

The explicit form of the continuous q-Hermite polynomials of Rogers $[13, 3]$ $H_n(\sin \kappa x|q)$ is exhibited by their Fourier expansion

$$H_n(\sin \kappa x|q) = \hat{r}^n \sum_{k=0}^{n} (-1)^k \left[\begin{array}{c} n \\ k \end{array} \right]_q e^{i(2k-n)\kappa x},$$

where $0 < q = e^{-2\kappa^2} < 1$ and the symbol $\left[\begin{array}{c} n \\ k \end{array} \right]_q$ stands for the q-binomial coefficient (throughout this paper, we will employ the standard notations of the q-special functions theory, see [11] or [12]).

The aim of this short paper is to derive a simple integral representation of the continuous q-Hermite polynomials $H_n(\sin \kappa x|q)$; furthermore this representation leads to the corresponding Rodrigues type difference formula for $H_n(\sin \kappa x|q)$.

† This research has been partially supported by the UNAM–DGAPA project IN 104198.