QUATERNION ORDERS OVER QUADRATIC INTEGER RINGS FROM ARITHMETIC FUCHSIAN GROUPS

Edson Donizete de Carvalho¹, Antonio Aparecido de Andrade² §, Reginaldo Palazzo Jr.³

¹Department of Mathematics
São Paulo State University at Ilha Solteira
Ilha Solteira - SP, BRAZIL
e-mail: edson@mat.feis.unesp.br

²Department of Mathematics
São Paulo State University at São José do Rio Preto
São José do Rio Preto - SP, BRAZIL
e-mail: andrade@ibilce.unesp.br

³Department of Telematics
Campinas State University
Campinas - SP, BRAZIL
e-mail: palazzo@dt.fee.unicamp.br

Abstract: In this paper we show that the quaternion orders \(O_{\mathbb{Z}[\sqrt{2}]} \cong (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} \) and \(O_{\mathbb{Z}[\sqrt{3}]} \cong (3 + 2\sqrt{3}, -1)_{\mathbb{Z}[\sqrt{3}]} \), appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras \(\mathcal{A}_{\mathbb{Q}(\sqrt{2})} \cong (\sqrt{2}, -1)_{\mathbb{Q}(\sqrt{2})} \) and \(\mathcal{A}_{\mathbb{Q}(\sqrt{3})} \cong (3 + 2\sqrt{3}, -1)_{\mathbb{Q}(\sqrt{3})} \), respectively. Furthermore, we identify the maximal orders containing these orders.

AMS Subject Classification: 18B35, 94A15

Key Words: Hilbert symbol, arithmetic Fuchsian group, quaternion order, coding theory

Received: April 11, 2012 © 2012 Academic Publications

§Correspondence author
1. Introduction

A Fuchsian group is defined as a discrete subgroup of the projective special linear group $\text{PSL}(2, \mathbb{R})$. Geometrically, the group $\text{PSL}(2, \mathbb{R})$ can be viewed as isometries which act by homeomorphisms on the upper-half plane $\mathbb{H}^2 = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ (Euclidean model of hyperbolic plane), where each isometry is given by a Möbius transformation $T : \mathbb{C} \to \mathbb{C}$ defined as $T(z) = \frac{az + b}{cz + d}$, where $a, b, c, d \in \mathbb{R}$ and $ad - bc = 1$, [9]. In this paper, we are interested in the special class of Fuchsian group called arithmetic Fuchsian group which is obtained by embedding ρ_1 of the group of units of an order \mathcal{O}^1 belonging to a quaternion algebra \mathcal{A} over a totally real number field into a subgroup of the group $\text{PSL}(2, \mathbb{R})$ of real matrices with determinant equal to 1.

Recently, in [4] and [3] several lattice identifications in the hyperbolic plane have been realized in the context of coding and communication theory. These lattices are described by \mathbb{Z}-modules (quaternion orders) consisting of hyperbolic points as the barycenter of the fundamental regular polygons belonging to the hyperbolic tessellation $\{4g, 4g\}$, where $g \geq 2$ denotes the genus of the oriented and compact surface. In [4] and [3] the authors proposed an arithmetic procedure for the identification of the elements of the arithmetic Fuchsian groups Γ_8 and Γ_{12} by the elements of the quaternion orders $\mathcal{O}_{\mathbb{Z}[\sqrt{2}]} \simeq (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]}$ and $\mathcal{O}_{\mathbb{Z}[\sqrt{3}]} \simeq (3 + 2\sqrt{3}, -1)_{\mathbb{Z}[\sqrt{3}]}$, respectively. The arithmetic Fuchsian groups Γ_8 and Γ_{12} consist of the corresponding Möbius transformations associated with the normal form type of edge-pairings [1] with respect to the fundamental regular polygons with 8 and 12 edges.

We develop an arithmetic procedure for the determination of the places at which these quaternion orders ramify. This procedure gives a criterion for checking if these quaternion order are maximal in the corresponding quaternion algebra. We will see that $\mathcal{O}_{\mathbb{Z}[\sqrt{2}]}$ and $\mathcal{O}_{\mathbb{Z}[\sqrt{3}]}$ are not maximal orders. At the same time, we identify the maximal orders \mathcal{M} containing the quaternion orders $\mathcal{O}_{\mathbb{Z}[\sqrt{2}]}$ and $\mathcal{O}_{\mathbb{Z}[\sqrt{3}]}$.

Thus, the study of maximal orders has its motivation based on the importance that geometrically uniform codes (GUCs) and space-time block codes (SBTCs) have in the design of new efficient digital communication systems. In the context of GUCs, Cavalcante and Palazzo [8], show that the error-probability of signal sets Λ depends on the curvature t associated with homogeneous spaces \mathbb{E}, or equivalently, on the genus of a surface, and that the best performance is achieved when we consider surfaces with constant negative curvature (hyperbolic space).
Silva et al. [5] have shown how relevant is the design of hyperbolic signal sets (quotient of a maximal order by a non-trivial ideal) with respect to the performance of the system. In the context of STBCs, Luzzi et al. [7] propose a new method called algebraic reduction for 2×2 STBCs based on maximal orders from the quaternion algebra \mathcal{O} (identified by the symmetric group which in turn are associated with a fundamental region in the hyperbolic plane).

2. Basic Algebraic Results

In this section we review basic results on valuations over a number field of characteristic different from 2 and \mathcal{P}-completion and quaternion algebra which are relevant to the development of this paper. In this regard, we refer the reader to [2].

Let \mathbb{F} be any number field. A valuation υ on \mathbb{F} is a mapping $\upsilon : \mathbb{F} \to \mathbb{R}^+$, satisfying the following properties:

1. $\upsilon(x) \geq 0$ for all $x \in \mathbb{F}$ and $\upsilon(x) = 0$ if and only if $x = 0$.
2. $\upsilon(xy) = \upsilon(x)\upsilon(y)$ for all $x, y \in \mathbb{F}$.
3. $\upsilon(x + y) \leq \upsilon(x) + \upsilon(y)$ for all $x, y \in \mathbb{F}$.
4. $\upsilon(x + y) \leq \max\{\upsilon(x) + \upsilon(y)\}$ for all $x, y \in \mathbb{F}$.

If the valuation υ also satisfies property 4, then υ is called non-Archimedean valuation. If the valuation υ does not satisfy property 4, then we say υ is an Archimedean valuation. Two valuations υ and υ_1 in \mathbb{F} are equivalent if there exists $l \in \mathbb{R}^+$ such that $\upsilon(x) = [\upsilon_1(x)]^l$ for $x \in \mathbb{F}$. This equivalence of valuations, also defines equivalence between topological spaces. An equivalence class of valuations is called a place, a prime or a prime spot of \mathbb{F}. The field \mathbb{F} is said to be complete at υ if every Cauchy sequence in \mathbb{F} converges to an element of \mathbb{F}. If the number field \mathbb{F} is not complete with a valuation, it is always possible to construct a field \mathbb{F}_υ such that \mathbb{F}_υ is an extension of \mathbb{F}, and in addition \mathbb{F}_υ is complete with respect to this extended valuation. These fields are called completions of \mathbb{F}.

For the cases where \mathbb{F} is complete with an Archimedean valuation, then \mathbb{F} is isomorphic to \mathbb{R} or \mathbb{C} and the valuation is equivalent to the usual absolute value. The classes of non-Archimedean valuations are known as the finite places or finite primes and these are in one-to-one correspondence with the prime ideals of the integer ring $\mathcal{O}_\mathbb{F}$ of the number field \mathbb{F}. For these cases, we also denote
\(\nu = \mathcal{P} = \langle \beta \rangle \). If \(\beta \in \mathcal{O}_F \) and \(\beta \neq 0 \), let \(\nu_\mathcal{P}(\beta) \) be the order of \(\beta \) at \(\mathcal{P} \), that is, the power of \(\mathcal{P} \) in the factorization of the fractional ideal \(\beta \mathcal{P} \). Define \(\nu_\mathcal{P}(0) \) to be 1. The symbol \(\mathbb{F}_\mathcal{P} \) denotes the completion of \(\mathbb{F} \) with respect to the \(\mathcal{P} \)-adic valuation (this field is also called \(\mathcal{P} \)-adic field), \(\mathcal{R}_\mathcal{P} = \{ x \in \mathbb{F}_\nu : \nu_\mathcal{P}(x) \geq 0 \} \) the ring of \(\mathcal{P} \)-adic integers and the maximal ideal in \(\mathcal{P} \) is given by \(\mathcal{P} = \{ x \in \mathbb{F}_\nu : \nu_\mathcal{P}(x) > 0 \} \). Thus, \(\mathbb{F}_\mathcal{P} = \{ \sum_{j=n}^\infty a_j \beta^j : a_j \in \mathcal{O}_F \} \), where \(n \) satisfies the condition \(\nu_\mathcal{P}(x) = \nu_\mathcal{P}(\beta^n) \). The \(\mathcal{P} \)-adic field \(\mathbb{F}_\mathcal{P} \) is called dyadic if \(N(\mathcal{P}) \) is a power of 2, otherwise non-dyadic.

Theorem 1. (Hensel’s Lemma) Let \(\mathcal{R}_\mathcal{P} \) be a ring of \(\mathcal{P} \)-adic integers and let \(\mathbb{F} \) denotes the residue field. Let \(f(x) \) be a monic polynomial in \(\mathcal{R}_\mathcal{P} \) such that \(f(x) = \bar{g}(x)\bar{h}(x) \), where \(\bar{g}(x), \bar{h}(x) \in \mathbb{F}[x] \) are relatively prime polynomials. Then there exists polynomials \(g, h \in \mathcal{R}_\mathcal{P}[x] \), where \(g \) and \(h \) reduce mod \(\mathcal{P} \) to \(\bar{g} \) and \(\bar{h} \), with \(\deg(g) = \deg(\bar{g}), \; \deg(h) = \deg(\bar{h}) \) and \(f(x) = g(x)h(x) \).

2.1. Quaternion Algebra and Hilbert Symbol

A quaternion algebra \(\mathcal{A} = (\frac{t,s}{F}) \) is defined as a 4-dimensional vector space over a field \(\mathbb{F} \), with basis \(\{1, i, j, ij\} \), satisfying the conditions \(i^2 = t, \; j^2 = s, \; ij = -ji \) and \((ij)^2 = -ts \), where \(t, s \in \mathbb{F} = \mathbb{F} - \{0\} \). The algebra \(\mathcal{A} = (\frac{t,s}{F}) \) can be embedded in \(M(2, \mathbb{F}(\sqrt{t})) \) (the set of all \(2 \times 2 \) matrices with elements over \(\mathbb{F}(\sqrt{t}) \)), i.e., there is a linear map such that

\[
\begin{align*}
i &\mapsto \begin{pmatrix} \sqrt{t} & 0 \\ 0 & -\sqrt{t} \end{pmatrix} \quad \text{and} \quad j &\mapsto \begin{pmatrix} 0 & r_1 \\ r_2 & 0 \end{pmatrix},
\end{align*}
\]

where \(s = r_1r_2 \). There exist \(\mathbb{R} \)-isomorphisms \(\rho_i \) given by \(\rho_1 : \mathcal{A}^\mathbb{Q} \otimes \mathbb{R} \to M(2, \mathbb{R}) \) and \(\rho_i : \mathcal{A}^\mathbb{Q} \otimes \mathbb{R} \to H_i \), for \(i = 2, 3, \cdots, n \), where \(\mathcal{A} \) is non-ramified at the place \(\rho_1 \) (we also say \(\mathcal{A} \) splits at the place \(\rho_1 \)) and ramified at the remaining places \(\rho_i \)'s, with \(H_i = (\frac{-1,-1}{\mathbb{R}}) \) denoting the Hamilton quaternion. The Hamilton quaternion is a division algebra, that is, for every nonzero element there is a multiplicative inverse.

The element \(\mathcal{T} = x_0 - x_1i - x_2j - x_3ij \in \mathcal{A} \) is called conjugate of the element \(x = x_0 + x_1i + x_2j + x_3ij \in \mathcal{A} \). The reduced trace and the reduced norm of an element \(x \in \mathcal{A} \) are defined by \(\text{Trd}(x) = x + \mathcal{T} \) and \(\text{Nrd}(x) = x\mathcal{T} = x_0^2 - tx_1^2 - sx_2^2 + txs_3^2 \). Notice, \(\text{Nrd}(x) \) is a quadratic form over \(\mathbb{F} \) in the four variables \(x_0, x_1, x_2, x_3 \).

Theorem 2. If \(t, s \in \frac{\mathbb{F}}{\mathbb{F}} \) then, for \(\mathcal{A} = (\frac{t,s}{F}) \), the following facts are equivalent:
1. $A \cong \left(\frac{-1}{\mathbb{F}} \right)$ or $M(2, \mathbb{F})$.

2. The quadratic form A is not a division algebra.

3. There is $x \in \mathbb{F}^4$, where $x = (x_0, x_1, x_2, x_3) \neq (0, 0, 0, 0)$ such that $\text{Nrd}(x) = x_0^2 - tx_1^2 - sx_2^2 + txs x_3^2 = 0$.

4. The quadratic form $tx_1^2 + sx_2^2 = 1$ has a solution with $(x, y) \in \mathbb{F} \times \mathbb{F}$.

5. If $E = \mathbb{F}(\sqrt{t})$ then $s \in N_{E|\mathbb{F}}(E)$.

The Hilbert symbol for the elements $t, s \in \hat{\mathbb{F}}$ is defined by

$$(t, s) = \begin{cases} 1, & \text{if } tx_1^2 + sx_2^2 = 1 \text{ has nonzero solution in } \mathbb{F} \times \mathbb{F} \\ -1, & \text{if not.} \end{cases}$$

Note that the Hilbert symbol (t, s) denotes the same result as established in items (2) and (3) of Theorem 2.

In order to get control over different isomorphism classes of the quaternion algebras over \mathbb{F}, one considers the completions $A_\nu \cong A \otimes \mathbb{F} F_\nu$. It is well-known that for every A_ν there is only two possibilities: $A_\nu \cong M_2(F_\nu)$ (A splits at ν) or $A_\nu \cong H_\nu$ (A is ramified at ν), where H_ν is a division algebra over \mathbb{F}_ν. In order to decide if $(t, s)_{F_\nu}$ is ramified when $\nu = P$ is a prime ideal, it is convenient to use the Hilbert symbol. A quaternion algebra $A = (t, s)_F$ is called ramified at P if and only if $(\frac{Ls}{P}) = -1$.

Theorem 3. (Hilbert Reciprocity Law, see [2]) Let \mathbb{F} be a number field and $t, s \in \mathbb{F} - \{0\}$. Then the set of places $\{ \nu | (t, s) = -1 \text{ in } \mathbb{F}_\nu \}$ is finite and of even cardinality.

Another important result for the determination whether the quaternion algebra $A = (t, s)_P$ splits over the P-adic field \mathbb{F}_P is given next.

Theorem 4. (see [2]) Let \mathbb{F}_P be a non-archimedean P-adic field, with ring p-adic integer R and maximal ideal P. Let $A = (\frac{t}{P})_P$, where $t, s \in R$.

- If $t, s \not\in P$, then A splits.
- If $t \not\in P, s \in P$, then A splits if and only if t is a square mod P.
- If $t, s \in P - P^2$, then A splits if and only if $-t^{-1}s$ is a square mod P.
We conclude, from Theorem 4, that the quaternion algebra \(\mathcal{A} = \left(\frac{t,s}{\mathbb{F}} \right) \) splits if only if \(-t^{-1}s\) is a square in \(R_{\mathcal{P}}^* \). However, an element \(a \in R_{\mathcal{P}}^* \) is a square if only if its image \(\bar{a} \) is a square in the residue field. As a natural consequence of the Hensel’s Lemma (Theorem 1), it follows that the polynomial \(x^2 - a = 0 \) factorizes in \(R_{\mathcal{P}}^*[x] \) if only if the polynomial \(\bar{x}^2 - \bar{a} = \bar{0} \) factorizes in the residue field into relatively prime factors.

Remark 1. Let \(\mathbb{F} \) be a totally real number field and \(t, s \in \bar{\mathbb{F}} \) and \(\mathcal{P} \) a prime ideal of \(\mathbb{F} \), with \(N(\mathcal{P}) = q \). In order to decide whether \((t, s)_{\mathbb{F}} \) is ramified at the prime ideal \(\mathcal{P} \) it is equivalent to showing that \(\bar{a} \) is not a square in \(\bar{\mathbb{F}} \). Without loss of generality, we take \(G = \{1, -1\} \). From this, we conclude that \(\bar{a} = -(-1t) = -\bar{1} \). Therefore, we need to show that either \(-1 \not\in \mathbb{L}^2 \) or \((\frac{-1}{q}) = -1 \).

Now we consider a number field \(\mathbb{F} \) of degree \(n \) over \(\mathbb{Q} \). Then there are \(n \) Galois embedding of \(\mathbb{F} \) into \(\mathbb{C} \) with \(n = r_1 + 2r_2 \), where \(r_1 \) is the number of real embedding \(\sigma(\mathbb{F}) \subset \mathbb{R} \) and \(r_2 \) is the number of pairs of \((\sigma, \bar{\sigma})\) such that \(\sigma(\mathbb{F}) \not\subset \mathbb{R} \). If \(\mathbb{F} \subset \mathbb{K} \), where \(\mathbb{K} \) is an extension field of \(\mathbb{F} \), then \((\frac{t,s}{\mathbb{F}}) \otimes _{\mathbb{F}} K \cong (\frac{t,s}{\mathbb{K}}) \).

Definition 1. If \(\sigma: \mathbb{F} \longrightarrow \mathbb{R} \) is a real embedding of a number field \(\mathbb{F} \), then \((\frac{t,s}{\mathbb{F}}) \) is said to be ramified at \(\sigma \) if \((\frac{\sigma(t),\sigma(s)}{\mathbb{R}}) \cong \mathcal{H} \) or \(M(2, \mathbb{R}) \).

For a real embedding \(\sigma \) of the number field \(\mathbb{F} \), it follows that \((\frac{t,s}{\mathbb{F}}) \otimes _{\sigma} \mathbb{R} \cong (\frac{\sigma(t),\sigma(s)}{\mathbb{R}}) \cong \mathcal{H} \) or \(M(2, \mathbb{R}) \).

Remark 2. We known that every positive real number is a square in \(\mathbb{R} \). As a consequence, the Hilbert symbol associated with \((\frac{1,1}{\mathbb{R}})\) and \((\frac{1,-1}{\mathbb{R}})\) is equal to 1 and the Hilbert symbol associated with \((\frac{-1,-1}{\mathbb{R}})\) is equal to \(-1\). Therefore, the quaternion algebra over \(\mathbb{R} \) given by \((\frac{1,1}{\mathbb{R}})\) and \((\frac{1,-1}{\mathbb{R}})\) are isomorphic to \(M(2, \mathbb{R}) \) and for the case \((\frac{-1,-1}{\mathbb{R}})\) it is isomorphic to the Hamilton quaternion \(\mathcal{H} \).
Theorem 5. (see [2]) A quaternion algebra \((t,s)\) is isomorphic to exactly one of \(H\) or \(M(2,\mathbb{R})\), according to whether both \(t\) and \(s\) are negative or not.

Theorem 6. (see [2]) Let \(\mathcal{A}\) be a quaternion algebra over a number field \(\mathbb{F}\). Then \(\mathcal{A}\) splits over \(\mathbb{F}\) if and only if \(\mathcal{A} \otimes_{\mathbb{F}} \mathbb{F}_\nu\) splits over \(\mathbb{F}_\nu\) at all places.

Note that the finiteness of the set of places at which \(tx^2 + sy^2 = 1\) fails to have a solution, given in Hilbert Reciprocity Law, followed from Theorem 4. For any \(t\) and \(s\), which we can assume lie in \(\mathcal{O}_\mathbb{F}\), there are only finitely many prime ideals so that \(t\) or \(s\) \(\in\) \(\mathcal{P}\). Thus \((t,s)\) splits at all but a finite number of \(\mathcal{P}\)-places. As there are only finitely many Archimedean places and finitely many \(\mathcal{P}\)-places (with characteristic different from 2), then \((t,s)\) splits at all but finite number of places [2].

Theorem 7. (see [2]) Let \(\mathcal{A}\) be a quaternion algebra over a number field \(\mathbb{F}\). The number of places \(\nu\) on \(\mathbb{F}\) such that \(\mathcal{A}\) is ramified at \(\nu\) is of even cardinality.

Definition 2. The finite set of places at which \(\mathcal{A}\) is ramified will be denoted by \(\text{Ram}(\mathcal{A})\), the subset of Archimedean ones by \(\text{Ram}_\infty(\mathcal{A})\) and the non-Archimedean ones by \(\text{Ram}_f(\mathcal{A})\). The places \(\nu \in \text{Ram}_\infty(\mathcal{A})\) correspond to prime ideals \(\mathcal{P}\) and the reduced discriminant of \(\mathcal{A}, \Delta(\mathcal{A})\), is the ideal defined by

\[
\Delta(\mathcal{A}) = \prod_{\mathcal{P} \in \text{Ram}_f(\mathcal{A})} \mathcal{P}.
\]

The discriminant \(\Delta(\mathcal{A})\) of \(\mathcal{A}\) is defined as the product of the prime ideals at which \(\mathcal{A}\) is ramified.

2.2. Quaternion Order

An order \(\mathcal{O}\) in \(\mathcal{A}\) over \(\mathbb{F}\) is a subring of \(\mathcal{A}\) containing \(\mathbb{Z}[\theta]\), which is finitely generated as a \(\mathcal{O}_{\mathbb{F}}\)-module containing 1 with rank equal to \(4n\), such that \(\mathbb{F}\mathcal{O} = \mathcal{A}\).

Example 1. (see [4], [3]) Let \(\mathbb{Z}[\sqrt{2}]\) be the integers ring of the number field \(\mathbb{Q}(\sqrt{2})\). The \(\mathbb{Z}[\sqrt{2}]\)-module given by \(\mathcal{O}_{\mathbb{Z}[\sqrt{2}]} = (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} = \{x_0 + x_1i + x_2j + x_3ij | x_0, x_1, x_2, x_3 \in \mathbb{Z}[\sqrt{2}]\}\) (where \(i^2 = \sqrt{2}\) and \(j^2 = -1\)) is a quaternion order of the quaternion algebra \(\mathcal{A}\) over \(\mathbb{Q}(\sqrt{2})\). The elements of this quaternion order can be seen as elements of an arithmetic Fuchsian group.
Γ₈ associated with the fundamental polygon P₈ of the hyperbolic tessellation {8,8} from the normal form type of edge-pairings identification. Now, let \(\mathbb{Z}[\sqrt{3}] \) be the integers ring of the number field \(\mathbb{Q}(\sqrt{3}) \). The \(\mathbb{Z}[\sqrt{3}] \)-module given by \(\mathcal{O}_{\mathbb{Z}[\sqrt{3}]} = (3 + 2\sqrt{3}, -1)_{\mathbb{Z}[\sqrt{3}]} = \{x_0 + x_1i + x_2j + x_3ij | x_0, x_1, x_2, x_3 \in \mathbb{Z}[\sqrt{3}] \} \) (where \(i^2 = 3 + 2\sqrt{3} \) and \(j^2 = -1 \)) is a quaternion order of the quaternion algebra \(A \) over \(\mathbb{Q}(\sqrt{3}) \). The elements of this quaternion order can be seen as elements of an arithmetic Fuchsian group \(\Gamma_{12} \) associated with the fundamental polygon \(P_{12} \) of the hyperbolic tessellation \(\{12,12\} \) from the normal form type of edge-pairings identification.

3. Maximal Order

If \(\mathcal{O} \) is an order in \(A \), then the discriminant \(\Delta(\mathcal{O}) \) is defined as the square root of the \(\mathbb{Z}[\theta] \)-ideal generated by \(\det(Tr(x_i \bar{x}_j)) \), where \(\mathbb{Z}[\theta] \) is integer ring of number field \(\mathbb{F} \) and \(\{x_1, x_2, x_3, x_4\} \) is a \(\mathbb{Z}[\theta] \)-basis of the quaternion order \(\mathcal{O} \). An order \(\mathcal{M} \) in a quaternion algebra \(A \) is called maximal if \(\mathcal{M} \) is not contained in any other order in \(A \). If \(\mathcal{M} \) is a maximal order in \(A \) containing another order \(\mathcal{O} \), then the discriminant satisfies the following condition, \(\Delta(\mathcal{O}) = \Delta(\mathcal{M})|\mathcal{M} : \mathcal{O}| \) and \(\Delta(\mathcal{M}) = \Delta(\mathcal{A}) \). Conversely, if \(\Delta(\mathcal{O}) = \Delta(\mathcal{A}) \), then \(\mathcal{O} \) is a maximal order in \(A \).

Proposition 1. (see [3]) If \(\mathcal{O}_{\mathbb{Z}[\theta]} = (t,s)_{\mathbb{Z}[\theta]} \) is a quaternion order of a quaternion algebra \(A = (t,s)_{\mathbb{F}} \) over a field \(\mathbb{F} \) then the discriminant is given by \(\Delta(\mathcal{O}_{\mathbb{Z}[\theta]}) = 4ts \).

Example 2. Applying Proposition 1 to the quaternion order \(\mathcal{O}_{\mathbb{Z}[\sqrt{2}]} \cong (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} \) and \(\mathcal{O}_{\mathbb{Z}[\sqrt{3}]} \cong (3 + 2\sqrt{3}, -1)_{\mathbb{Z}[\sqrt{3}]} \), we obtain \(\Delta(\mathcal{O}_{\mathbb{Z}[\sqrt{2}]}) = -4\sqrt{2} = -\sqrt{2}^5 \) and \(\Delta(\mathcal{O}_{\mathbb{Z}[\sqrt{3}]}) = -4(3 + 2\sqrt{3}) \), respectively.

Proposition 2. If \(A = (\sqrt{2}, -1)_{\mathbb{Q}(\sqrt{2})} \) is a quaternion algebra over \(\mathbb{Q}(\sqrt{2}) \), then \(A \) is ramified at one real place \(\sigma_2 \in Gal(\mathbb{Q}(\sqrt{2})|\mathbb{Q}) \). If \(A = (3 + 2\sqrt{3}, -1)_{\mathbb{Q}(\sqrt{3})} \) is a quaternion algebra over \(\mathbb{Q}(\sqrt{3}) \), then \(A \) is ramified at one real place \(\sigma_2 \in Gal(\mathbb{Q}(\sqrt{3})|\mathbb{Q}) \).

Proof. When we applied the non-identity homomorphism \(\sigma_2 \) over \(\sqrt{2} \), we
obtain $\sigma_2(\sqrt{2}) = -\sqrt{2} < 0$. From Equation (2.1), we obtain $(\frac{\sqrt{2} - 1}{Q(\sqrt{2})}) \otimes_{\sigma} \sigma(Q(\sqrt{2})) \cong (\frac{\sigma_2(\sqrt{2}) - 1}{\sigma(Q(\sqrt{2}))})$. As a consequence of Definition 1 and Theorem 5, it follows that $\mathcal{A} = (-\sqrt{2}, -1)_{Q(\sqrt{2})} \cong H$ and \mathcal{A} is ramified at the real place σ_2. Now, when we applied the non-identity homomorphism σ_2 over $3 + 2\sqrt{3}$, we obtain $\sigma_2(3 + 2\sqrt{3}) = 3 - 2\sqrt{3} < 0$. From Equation (2.1), we obtain $(3 + 2\sqrt{3}, -1)_{Q(\sqrt{3})} \cong (\sigma_2(3 + 2\sqrt{3}) - 1)_{\sigma(Q(\sqrt{3}))}$. As a consequence of Definition 1 and Theorem 5, it follows that $\mathcal{A} = (3 - 2\sqrt{3}, -1)_{Q(\sqrt{3})} \cong H$ and \mathcal{A} is ramified at the real place σ_2.

Notice that the place σ_2 non-identity homomorphism belonging to the Galois Group $Gal(F|Q)$ for the cases $F = Q(\sqrt{2})$ or $Q(\sqrt{3})$ corresponds to the Archimedean valuation, and we obtain \mathbb{R} as completion of the field F with this valuation.

Proposition 3. Let $O_{Z[\sqrt{2}]} \cong (\sqrt{2}, -1)_{Z[\sqrt{2}]}$ be a quaternion order of the quaternion algebra $A_{Q(\sqrt{2})} \cong (\sqrt{2}, -1)_{Q(\sqrt{2})}$. Then, we obtain the following results:

1. $\mathcal{P}_1 = \langle \sqrt{2} \rangle$ is the unique prime ideal, such that, the quaternion algebra $A_{Q(\sqrt{2})}$ is ramified.

2. The quaternion order $O_{Z[\sqrt{2}]}$ is not maximal order in the quaternion algebra $A_{Q(\sqrt{2})}$.

Proof. 1) Notice that $\Delta(A_{Q(\sqrt{2})})$ divides $\Delta(O_{Z[\sqrt{2}]}) = -4\sqrt{2} = -(\sqrt{2})^5$. We know the relative norm $N_{Q(\sqrt{2})|Q}$ over the element $z = x + y\sqrt{2} \in Z[\sqrt{2}]$ is given by $N_{Q(\sqrt{2})|Q}(z) = x^2 - 2y^2$. Then, when we applied the relative norm $N_{Q(\sqrt{2})|Q}$ over $\sqrt{2}$, we obtain $N_{Q(\sqrt{2})|Q}(\sqrt{2}) = -2$. Therefore, we conclude the prime ideal $\mathcal{P}_1 = \langle \sqrt{2} \rangle$, it is the only possibility of the prime ideal, such that, the quaternion \mathcal{A} is ramify. For 2), as a consequence of item 1), we obtain $\Delta(A) = \sqrt{2}$. Then, we conclude $\Delta(A) \neq \Delta(O)$. Therefore O is not a maximal order in A. \qed

Proposition 4. Let $O_{Z[\sqrt{3}]} \cong (3 + 2\sqrt{3}, -1)_{Z[\sqrt{3}]}$ be a quaternion order of the quaternion algebra $A_{Q(\sqrt{2})} \cong (\sqrt{2}, -1)_{Q(\sqrt{2})}$. Then, we obtain the followings results:
1. \(P_1 = \langle 3 + 2\sqrt{3} \rangle \) is the unique prime ideal such that the quaternion algebra \(A \) is ramified.

2. The quaternion order \(O_{\mathbb{Z}[\sqrt{3}]} \) is not maximal order in the quaternion algebra \(A_{\mathbb{Q}(\sqrt{3})} \).

Proof. Notice that \(\Delta(A_{\mathbb{Q}(\sqrt{3})}) \) divides \(\Delta(O_{\mathbb{Z}[\sqrt{3}]}) = -4(3 + 2\sqrt{3}) \). We know the relative norm \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}} \) over the element \(z = x + y\sqrt{3} \in \mathbb{Z}[\sqrt{3}] \) is given by \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}}(z) = x^2 - 3y^2 \). We can write \(-2\) as \(-2 = (1 + \sqrt{3})(1 - \sqrt{3})\). Then, when we applied the relative norm \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}} \) over \(3 + 2\sqrt{3} \), \(1 + \sqrt{3} \) and \(1 - \sqrt{3} \), we obtain \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}}(3 + 2\sqrt{3}) = -3 \) and \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}}(1 + \sqrt{3}) = N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}}(1 - \sqrt{3}) = -2 \). Therefore, \(3 + 2\sqrt{3}, 1 + \sqrt{3} \) and \(1 - \sqrt{3} \) are prime elements in integer ring \(\mathbb{Z}[\sqrt{3}] \). Then, we conclude \(\Delta(O_{\mathbb{Z}[\sqrt{3}]}) \) divides \(\Delta(\mathbb{Q}(\sqrt{3})) \). Now, we take \(P_1 = \langle 3 + 2\sqrt{3} \rangle, P_2 = \langle 1 + \sqrt{3} \rangle \) and \(P_3 = \langle 1 - \sqrt{3} \rangle \). Then \(\Delta(O_{\mathbb{Z}[\sqrt{3}]}) = P_1 P_2^2 P_3^2 \). However, it is possible to write \(1 + \sqrt{3} \) as \(1 + \sqrt{3} = (1 - \sqrt{3})(-2 - \sqrt{3}) \), where and \(N_{\mathbb{Q}(\sqrt{3})}^{\mathbb{Q}}(-2 - \sqrt{3}) = 1 \). Then, we conclude \(\langle -2 - \sqrt{3} \rangle \) is invertible element of \(\mathbb{Z}[\sqrt{3}] \). Therefore, the prime ideals generated by \(\langle 1 + \sqrt{3} \rangle \) and \(\langle 1 - \sqrt{3} \rangle \) are conjugate. Without loss of generality, we take \(P_2 = \langle 1 + \sqrt{3} \rangle \). Then, we conclude the \(P_1 = \langle 3 + 2\sqrt{3} \rangle, P_2 = \langle 1 + \sqrt{3} \rangle \) are only the possibilities of prime ideals, such that, \(A \) is ramified. It is easy to verify \(-1 \not\in \mathbb{L} \) and \(\mathbb{L} = \mathbb{F}^* = \mathbb{F} = \mathbb{F} - \{0\} \) (with \(\mathbb{F} \) finite field of cardinality 3), or as, \((\frac{-1}{3}) = -1 \). We saw in item 2) of Proposition 2 that \(A \) is ramified one real places. However, we saw in Theorem 7 that \(A \) are ramified on even places. Therefore, we conclude \(P_1 = \langle 3 + 2\sqrt{3} \rangle \), it is only prime ideal in \(\mathbb{Z}[\sqrt{3}] \), such that, \(A \) is ramified. \(\mathbb{L} = \mathbb{F}^* \).

For (2) as a consequence of item (1), we obtain \(\Delta(A) = 3 + 2\sqrt{3} \). Then, we conclude \(\Delta(A) \neq \Delta(\mathcal{O}) \). Therefore \(\mathcal{O} \) is not a maximal order in \(A \).

Notice that if \(O_{\mathbb{Z}[\sqrt{2}]} \simeq (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} \), then a \(\mathbb{Z}[\sqrt{2}] \)-basis for \(O_{\mathbb{Z}[\sqrt{2}]} \) is given by \(\{1, i, j, ij\} \), where \(i = \sqrt{2}, j = l, ij = \sqrt{2}l, l^2 = -1 \) and \(ij = -ji \).

From Proposition 3 it follows that the order \(O_{\mathbb{Z}[\sqrt{2}]} \) is not maximal. However, \(\{1, \frac{i}{2} = \frac{\sqrt{2}}{2}, j = l, \frac{i}{2}j = -j\frac{i}{2} \} \) is another \(\mathbb{Z}[\sqrt{2}] \)-basis for \(O_{\mathbb{Z}[\sqrt{2}]} \) and so, there is a new quaternion order \(\mathcal{M}_{\mathbb{Z}[\sqrt{2}]} \simeq (\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} \) containing \((\sqrt{2}, -1)_{\mathbb{Z}[\sqrt{2}]} \), where \(\Delta(\mathcal{M}_{\mathbb{Z}[\sqrt{2}]} = \sqrt{2} \). Therefore, \(\Delta(\mathcal{M}) = d(\mathcal{A}) \) and \(\mathcal{M}_{\mathbb{Z}[\sqrt{2}]} \) is a maximal order in \(A_{\mathbb{Z}[\sqrt{2}]} \). Similarly, if \(O_{\mathbb{Z}[\sqrt{3}]} \simeq (3 + 2\sqrt{3}, -1)_{\mathbb{Z}[\sqrt{3}]} \), then a \(\mathbb{Z}[\sqrt{3}] \)-basis for \(O_{\mathbb{Z}[\sqrt{3}]} \) is given by \(\{1, i, j, ij\} \), where \(i = \sqrt{2 + 3\sqrt{3}}, j = l, l^2 = -1 \) and \(ij = -ji \). From Proposition 4 it follows that the order \(O_{\mathbb{Z}[\sqrt{3}]} \) is not maximal.
However, $\{1, \frac{i}{2} = \sqrt{\frac{3+2\sqrt{3}}{2}}, j, \frac{j}{2} = -\frac{j}{2}i\}$ is another $\mathbb{Z}[^3]{\sqrt{3}}$-basis for $\mathcal{O}_{\mathbb{Z}[^3]{\sqrt{3}}}$ and so there is a new quaternion order $\mathcal{M}_{\mathbb{Z}[^3]{\sqrt{3}}} \simeq \langle \frac{3+2\sqrt{3}}{2}, -1 \rangle_{\mathbb{Z}[^3]{\sqrt{3}}}$ containing $(3 + 2\sqrt{3}, -1)_{\mathbb{Z}[^3]{\sqrt{3}}}$, where $\Delta(\mathcal{M}_{\mathbb{Z}[^3]{\sqrt{3}}}) = \sqrt{3}$. Therefore, $\Delta(\mathcal{M}) = \Delta(\mathcal{A})$ and $\mathcal{M}_{\mathbb{Z}[^3]{\sqrt{3}}}$ is a maximal order in $\mathcal{A}_{\mathbb{Z}[^3]{\sqrt{3}}}$. \hfill \square

Acknowledgments

The authors would like to thank the financial support received by FAPESP under Grant 2007/56052-8.

References

