CAUCHY PROBLEMS WITH MODIFIED CONDITIONS FOR THE EULER-POISSON-DARBOUX EQUATIONS IN THE SPHERICAL SPACE

Cheikh Ould Mohamed El-Hafedh, Elbar Ould Ely Telmoudy, Mohamed Vall Ould Moustapha

Université des Sciences, de Technologie et de Médecine (USTM)
Faculté des Sciences et Techniques
Département de Mathématiques et Informatique
Unité de Recherche: Analyse, EDP et Modélisation (AEDPM)
B.P.: 5026, Nouakchott, MAURITANIE

Abstract: In this note we give the solutions of the Cauchy problems for the Euler-Poisson-Darboux equations (EPD) with modified conditions in the spherical space with application to the wave equation.

AMS Subject Classification: 35Q05, 35L15, 58J45
Key Words: Cauchy problem, Euler Poisson-Darboux equations, wave equation, Bessel functions, spherical space

1. Introduction

In El-Hafedh and Ould Moustapha [1] and El-Hafedh et al. [2], there are obtained the explicit solutions of Cauchy problems with modified conditions for the Euler-Poisson-Darboux equations in Euclidean and hyperbolic spaces. Here we give the explicit solutions of Cauchy problems with modified conditions for the Euler-Poisson-Darboux equation in spherical space. The classical Cauchy problem for the Euler-Poisson-Darboux equation in spherical space is considered in Fusaro [3] and in Kipriyanov and Ivanov [4] and [5]:

Received: March 26, 2014
© 2014 Academic Publications

§Correspondence author
More specifically, we are interested in the family of problems:

\begin{align*}
\tag{E_{\mu}^n}''
(a) \quad L_n U(t, \theta) &= A_{t}^\mu U(t, \theta) \quad 0 < t < \pi, \ \theta \in S^n \\
(b)'' \quad U(0, \theta) &= f(\theta), \ \partial_t U(0, \theta) = 0; \ f \in C^\infty(S^n).
\end{align*}

The operator A_{t}^μ is given by:

\begin{equation}
A_{t}^\mu = \frac{\partial^2}{\partial t^2} + (1 - 2\nu) \cot \theta \frac{\partial}{\partial \theta} - \left(1 - \frac{2\nu}{2}\right)^2.
\end{equation}

Note that in $(E_{\mu}^n)''$, the second data is zero ($g = 0$) as a solution of equation (a) can not be regular for $t = 0$ if its first derivative with respect to t are not zero. The modified conditions (b) and (b) allow to take the second data as any function g, void or while covering the classical Cauchy conditions (b)'. Thus the Cauchy problems $(E_{\frac{1}{2}}^n)$ and $(E_{\frac{1}{2}}')$ correspond to the classical (see Bunke and Olbrich[7]) and radial (Theorem 2) wave equations in S^n.

The main results of this note - Theorems 1, 2 and 3 - are given below, and their applications are in Section 6.

\textbf{2. Theorems}

\textbf{Theorem 1.} (Classical EPD with modified initial conditions) Let $\mu \in (0, \frac{1}{2})$. The Cauchy problem (E_{μ}^n) with modified conditions for the classical Euler-Poisson-Darboux equation on the spherical space has the unique solution given
by:

$$U(t, \theta) = \alpha_{n,-\mu}(\sin t)^{2\mu} \left(\frac{\partial}{\sin t \partial t} \right)^{\frac{n-1}{2}} \int_{r<t} f(\theta') \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{-\mu - \frac{1}{2}} d\mu(\theta')$$

$$+ \frac{1}{2\mu} \alpha_{n,\mu} \left(\frac{\partial}{\sin t \partial t} \right)^{\frac{n-1}{2}} \int_{r<t} g(\theta') \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{\mu - \frac{1}{2}} d\mu(\theta'),$$

when n is odd;

$$U(t, \theta) = \beta_{n,-\mu}(\sin t)^{2\mu} \left(\frac{\partial}{\sin t \partial t} \right)^{\frac{n}{2}} \int_{r<t} f(\theta') \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{-\mu} d\mu(\theta')$$

$$+ \frac{1}{2\mu} \beta_{n,\mu} \left(\frac{\partial}{\sin t \partial t} \right)^{\frac{n}{2}} \int_{r<t} g(\theta') \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{\mu} d\mu(\theta'),$$

when n is even; where $\alpha_{n,\mu} = \frac{1}{2\mu} \frac{\Gamma(1 + 2\mu)}{(2\pi)^{\frac{n}{2}} \Gamma^{2}(\frac{1}{2} + \mu)}$, $\beta_{n,\mu} = \frac{4\mu}{(2\pi)^{\frac{n}{2}}}$ and $r = d(\theta, \theta')$ is the geodesic distance between θ and θ' in \mathbb{S}^n.

Theorem 2. (Radial wave equation) Let $1 - 2\nu = 2q$ be a positive integer. The Cauchy problem $\left(E^\mu_{\frac{\nu}{2}} \right)'$ for the radial wave equation on the spherical space has the unique solution given by:

$$U(t, \theta) = \int_0^\pi f(\theta') \frac{\partial}{\partial t} W(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta' + \int_0^\pi g(\theta') W(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta',$$

where

$$W(t, \theta, \theta') = 4^{\nu-1} i \left(\sin \frac{\theta}{2} \sin \frac{\theta'}{2} \right)^{\nu} \left(\cos \frac{\theta'}{2} \right)^{2\nu}$$

$$\times \int_0^{+\infty} \int_{z e^{-\frac{i}{2}}}^{z e^{\frac{i}{2}}} J_{-\nu}(z \sin \frac{\theta}{2}) J_{-\nu}(z' \sin \frac{\theta'}{2})$$

and J_ν is the Bessel function (see [6], p. 65).

Theorem 3. (Radial EPD with modified initial conditions) Let $1 - 2\nu = 2q$ be a positive integer and $\mu \in (0, \frac{1}{2})$. The Cauchy problem $\left(E^\mu_{\frac{\nu}{2}} \right)'$ with modified conditions for the radial Euler-Poisson-Darboux equation on the spherical space has the unique solution given by:

$$U(t, \theta) = (\sin t)^{2\mu} \int_0^\pi f(\theta') W_{-\mu}(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta'$$
\[228 \quad \text{C.O.M. El-Hafedh, E.O.E. Telmoudy, M.V.O. Moustapha} \]

\[+ \frac{1}{2\mu} \int_0^\pi g(\theta')W_\mu(t, \theta, \theta')(\sin \theta')^{1-2\nu} \, d\theta', \]

where

\[W_\mu(t, \theta, \theta') = 4^{\nu+\mu-1}i \frac{\Gamma(1+\mu)}{\sqrt{\pi} \Gamma(\frac{1}{2}+\mu)} \left(\frac{\sin \frac{\theta}{2} \sin \frac{\theta'}{2}}{\cos \frac{\theta'}{2}} \right)^\nu \]

\[\times \int_0^t \left(\sin^2 \frac{t}{2} - \sin^2 \frac{y}{2} \right)^{\nu-\frac{1}{2}} \frac{\partial}{\partial y} \int_0^{+\infty} \int_{z_0}^{\infty} J_{-\nu}(z \sin \frac{\theta}{2}) J_{-\nu}(z' \sin \frac{\theta'}{2}) \]

\[\times J_0 \left(\sqrt{z^2 + z'^2 - 2zz' \cos \frac{y}{2}} \right) z^{-\nu} z'^\nu \, dz \, dz' \, dy. \quad (2.2) \]

3. Preliminaries

In this section we recall the continuous Jacobi transform, see Walter and Zayed [8], and we give some lemmas.

If \(1-2\nu = 2q \) is a positive integer and \(f(x)(1+x)^\nu \in L^1 \{ (-1, 1), (1-x^2)^{-\nu} \} \), the continuous Jacobi transform \(\hat{f}(\lambda) \) of \(f(x) \) is defined by

\[\hat{f}(\lambda) = \frac{1}{4q} \int_{-1}^1 f(x) P_\lambda^{\nu}(x) (1-x^2)^{-\nu} \, dx, \quad \lambda > \nu - \frac{1}{2}, \quad (3.1) \]

where \(P_\lambda^{\nu}(x) \) is the Jacobi function of the first kind, namely:

\[P_\lambda^{\nu}(x) = \frac{\Gamma(\lambda + 1 - \nu)}{\Gamma(\lambda + 1) \Gamma(1-\nu)} F \left(-\lambda, \lambda + 1 - 2\nu, 1 - \nu, \frac{1-x}{2} \right), \quad (3.2) \]

and \(F(a, b, c, z) \) is the Gauss hypergeometric function, see [6].

Lemma 1. We have \(\overline{A_\theta^{\nu}} f(\lambda) = - (\lambda + q)^2 \hat{f}(\lambda) \), where \(\lambda \in \mathbb{R}^+, \quad q = \frac{1}{2} - \nu. \)

Proof. It suffices to write

\[A_\theta^{\nu} = \frac{1}{(\sin \theta)^{1-2\nu}} \frac{\partial}{\partial \theta} (\sin \theta)^{1-2\nu} \frac{\partial}{\partial \theta} + \left(\frac{1-2\nu}{2} \right)^2, \]
Lemma 2. An inverse transform of the continuous Jacobi transform (3.1) is given by:

\[f(x) = 4\pi \int_0^{+\infty} \frac{\Gamma(\lambda + q)}{\Gamma(\lambda + 1/2)} \left[\frac{1}{\Gamma(\lambda + q)} P_{\lambda-q}^\nu(-x) \frac{\lambda \cot[(q-\lambda)\pi]}{\Gamma(q-\lambda)\Gamma(q+\lambda)} \right] d\lambda. \] (3.3)

Proof. By using the properties of the Gamma function (see Magnus et al. [6], p. 2), we unify several formulas for the inverse transform in Walter and Zayed [8] ((5.1),(5.4),(5.9) and (5.11)) when \(2q\) is a positive integer.

Lemma 3. For \(0 < t, \theta, \theta' < \pi\),

\[J(t,\theta,\theta') = \int_0^{+\infty} \int_{ze^{-\frac{t}{2}}}^{ze^{\frac{t}{2}}} J_{-\nu}(z \sin \frac{\theta}{2}) J_{-\nu}(z' \sin \frac{\theta'}{2}) \times J_0 \left(\sqrt{z^2 + z'^2 - 2zz' \cos \frac{t}{2}} \right) z^{-\nu} z'^{-\nu} dz dz', \]

then if \(t\) is sufficiently small, we have the following asymptotic formula:

\[J(t,\theta,\theta') \approx \frac{i \sin \frac{t}{2}}{2\pi \sin \frac{\theta}{2} \sin \frac{\theta'}{2}} \int_{-1}^{1} \frac{1}{\sqrt{Z}} F \left(\frac{1}{2} - \nu, \frac{1}{2} + \nu, \frac{1}{2}, Z \right) dp, \]

where \(Z = \frac{a^2 - (b-c)^2}{4bc}\), \(b - a < c < b + a\), \(a = \sqrt{1 - p^2 \sin \frac{t}{2}}\), \(b = \sin \frac{\theta}{2}\), \(c = \sin \frac{\theta'}{2}\).

Lemma 4. If \(W_{-\mu}^\nu\) is a solution of \((a)',\) then we have:

(i) \(A_t^\mu \left[(\sin t)^{2\mu} W_{-\mu}^\nu(t,\theta) \right] = (\sin t)^{2\mu} A_t^{-\mu} W_{-\mu}^\nu(t,\theta);\)

(ii) \((\sin t)^{2\mu} W_{-\mu}^\nu(t,\theta)\) satisfies equation \((a)'\) in \((E_{-\mu}^\nu)';\)

(iii) \(W_{-\mu}^{1-\frac{n}{\pi}}(t, r)\) and \((\sin t)^{2\mu} W_{-\mu}^{1-\frac{n}{\pi}}(t, r)\) satisfies equation \((a)\)

with \(r = d(\theta, \theta')\).
Lemma 5. For $0 < t < \pi$ and $\theta, \theta' \in S^n$ let

$$W_{n,\mu}(t, \theta, \theta') = C_{n,\mu} \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{\mu - \frac{n}{2}}$$

with $C_{n,\mu} = \frac{4\mu \Gamma(1 + \mu)}{2^n \pi^\frac{n}{2} \Gamma(1 + \mu - \frac{n}{2})}$ and $r = d(\theta, \theta')$, then we have:

(i) $W_{n,\mu}(t, \theta, \theta') = \left\{ \begin{array}{ll}
\alpha_{n,\mu}(\frac{\partial}{\partial \sin \theta}) \frac{n-1}{2} \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{\mu - \frac{1}{2}} & \text{when } n \text{ is odd} \\
\beta_{n,\mu}(\frac{\partial}{\partial \sin \theta}) \frac{n}{2} \left(\sin^2 \frac{t}{2} - \sin^2 \frac{r}{2} \right)^{n} & \text{when } n \text{ is even},
\end{array} \right.$

(ii) $W_{n,\mu}(t, x, x')$ satisfies the equation (a).

Lemma 6. Let J_ν be the Bessel function, then we have:

(i) $A_\nu' \left[\sin^\nu \frac{\theta}{2} J_{-\nu}(z \sin \frac{\theta}{2}) \right] = -\frac{1}{4} \sin^\nu \frac{\theta}{2} B_\nu' \left[J_{-\nu}(z \sin \frac{\theta}{2}) \right]$,

(ii) $A_\nu'' \left[\sin^\nu \frac{\theta}{2} \cos \nu \frac{\theta}{2} J_{-\nu}(z \sin \frac{\theta}{2}) \right] = -\frac{1}{4} \sin^\nu \frac{\theta}{2} \cos \nu \frac{\theta}{2} B_{-\nu}' \left[J_{-\nu}(z \sin \frac{\theta}{2}) \right]$

where $B_\nu' = z^2 \frac{\partial^2}{\partial z^2} + (3 - 2\nu)z \frac{\partial}{\partial z} + (1 - \nu)^2 + z^2$.

(iii) $\int (B_\nu \phi) \psi dz = \int \phi (C_\nu \psi) dz$, for $\phi \in L^1_{\text{loc}}(\mathbb{R}^+) \text{ and } \psi \in D(\mathbb{R}^+)$

with $C_\nu = z^2 \frac{\partial^2}{\partial z^2} + (1 + 2\nu)z \frac{\partial}{\partial z} + \nu^2 + z^2$.

(iv) The function $\psi(t, z, z') = z^{-\nu} J_0 \left(\sqrt{z^2 + z'^2 - 2zz' \cos \frac{t}{2}} \right)$ satisfies the equation $-\frac{1}{4} C_\nu \psi(t, z, z') = \frac{\partial^2}{\partial t^2} \psi(t, z, z')$.

The proofs of Lemmas 3, 4, 5 and 6 are analogous of the corresponding lemmas in El-hafed et al. [2] and are left to the reader.

4. The Classical Euler-Poisson-Darboux Equation

Proof of Theorem 1. – To prove that $U(t, \theta)$ satisfies equation (a), we use Lemmas 4 and 5.

– To see the initial conditions, we introduce the polar coordinates centralized in θ: $\theta' = \theta + \tan \frac{\omega}{2} \nu$, $\omega \in S^{n-1}$, and the change of variable $\sin \frac{\omega}{2} = (\sin \frac{t}{2}) s$, $0 < s < 1$, we obtain:

$$U(t, \theta) = 2^{n+2\mu} C_{n-\mu} \cos 2\mu \frac{t}{2} \int_0^1 f'_{\theta} \left(\frac{\psi}{2} \sin \frac{t}{2} \right)(1 - s^2)^{-\mu - \frac{\nu}{2}}$$

$$\times \left(1 + s^2 \sin^2 \left(\frac{t}{2} \right) \right)^{\frac{n-2}{2}} s^{-1} ds + \frac{C_{n,\mu}}{2\mu} 2^n \sin^{2\mu} \frac{t}{2}$$
\[\times \int_0^1 g^\#(\varphi \sin \frac{t}{2})(1 - s^2)^{\mu - \frac{n}{2}} \left(1 + s^2 \sin^2 \frac{t}{2}\right)^{\frac{n-2}{2}} s^{n-1} ds, \]

where \(f^\#(r) = \int_{S^{n-1}} f(\theta + r\omega) d\sigma(\omega) \) and \(\varphi = \frac{s}{\sqrt{1 + s^2 \sin^2 \frac{t}{2}}} \), since \(\int_{S^{n-1}} d\sigma(\omega) = \frac{2\pi}{\Gamma\left(\frac{n}{2}\right)} \) and \(\int_0^1 (1 - s^2)^{-\frac{\mu}{2}} s^{n-1} ds = \frac{\Gamma(1 - \mu - \frac{n}{2})\Gamma\left(\frac{n}{2}\right)}{2\Gamma(1 - \mu)} \).

5. The Radial Wave Equation

Proof of Theorem 2. – To prove that the kernel \(W(t, \theta, \theta') \) given in (2.1) satisfies the equation \((a)'\), \((\mu = \frac{1}{2}) \), we use Lemma 6.

– To see the initial conditions, we use Lemma 3 and the change of variables:

\[\theta' = 2 \arcsin \left(\frac{\sin \theta + q\sqrt{1 - p^2 \sin^2 \frac{t}{2}}}{\cos \frac{t}{2} + ip \sin \frac{t}{2}} \right), \quad -1 < p, q < 1. \]

Remark 1. By applying the Jacobi transform (3.1) to this problem, we have from Lemma 1:

\[\hat{U}(t, \lambda - q) = \cos(\lambda t) \hat{f}(\lambda - q) + \frac{\sin(\lambda t)}{\lambda} \hat{g}(\lambda - q). \quad (5.1) \]

By using the inversion formula (3.3) and interchange the order of integration we have from Lemma 2:

\[U(t, \theta) = \int_0^\pi f(\theta') \frac{\partial}{\partial t} W(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta' \]

\[+ \int_0^\pi g(\theta') W(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta', \]

\[W(t, \theta, \theta') = \frac{\pi}{4^{\nu-1}} \int_0^\infty \left[\frac{\Gamma(\lambda + q)}{\Gamma(\lambda + \frac{1}{2})} \right]^2 P_{\lambda - q}(\cos \theta)P_{\lambda - q}(\cos \theta') \]

\[\times \frac{\sin(\lambda t) \cot[(q - \lambda)\pi]}{\Gamma(q - \lambda)\Gamma(q + \lambda)} d\lambda. \]
6. The Radial Euler-Poisson-Darboux Equation

Proof of Theorem 3. – To prove that $U(t, \theta)$ satisfies equation (a)', we use Lemmas 4, 5 and 6.
– To see the initial conditions, we use Lemma 3 and the change of variables:

$$\sin \frac{y}{2} = s \sin \frac{t}{2} \text{ and } \theta' = 2 \arcsin \left(\sin \frac{\theta}{2} + q \sqrt{1 - p^2 s \sin \frac{t}{2}} \right), \quad -1 < q < 1.$$

Remark 2. By applying the Jacobi transform to this problem, we have from Lemma 1:

$$\hat{U}(t, \lambda - q) = (\cos \frac{t}{2})^{2\mu} 2 F_1 \left(\frac{1}{2} - \lambda, \frac{1}{2} + \lambda, 1 - \mu, \sin^2 \frac{t}{2} \right) \hat{f}(\lambda - q)$$

$$+ \frac{1}{2\mu} (2\sin \frac{t}{2})^{2\mu} 2 F_1 \left(\frac{1}{2} - \lambda, \frac{1}{2} + \lambda, 1 + \mu, \sin^2 \frac{t}{2} \right) \hat{g}(\lambda - q). \quad (6.1)$$

By the inversion formula and interchanging the order of integration, we have from Lemma 2:

$$U(t, \theta) = (\sin t)^{2\mu} \int_0^\pi f(\theta') W_{-\mu}(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta'$$

$$+ \frac{1}{2\mu} \int_0^\pi g(\theta') W_{\mu}(t, \theta, \theta')(\sin \theta')^{1-2\nu} d\theta',$$

$$W_{\mu}(t, \theta, \theta') = \frac{\pi}{4q-1} \left(2\sin \frac{t}{2} \right)^{2\mu} \int_0^{+\infty} \left[\frac{\Gamma(\lambda + q)}{\Gamma(\lambda + \frac{1}{2})} \right]^2 P_{\lambda-q}^\nu(\cos \theta) P_{\lambda-q}^\nu(\cos \theta')$$

$$\times 2 F_1 \left(\frac{1}{2} - \lambda, \frac{1}{2} + \lambda, 1 + \mu, \sin^2 \frac{t}{2} \right) \frac{\lambda \cot[(q - \lambda)\pi]}{\Gamma(q - \lambda)\Gamma(q + \lambda)} d\lambda.$$

7. Applications

Corollary 1. (Bunke and Olbrich [7], Proposition 2.2) The classical wave equation in the spherical space of dimension n). We let $\mu \to \frac{1}{2}$ in Theorem 1, we obtain the solution of the Cauchy problem for the classical wave equation in \mathbb{S}^n ($f = 0$):

$$U(t, \theta) = \frac{1}{2(2\pi)^m} \left(\frac{\partial}{\sin t \partial t} \right)^{m-1} \frac{1}{\sin t} \int_{S_t(\theta)} g(\theta') d\mu(\theta'),$$
when \(n \) is odd \((n = 2m + 1) \), where \(S_t(\theta) \) is the sphere of radius \(t \) around \(\theta \);

\[
U(t, \theta) = \frac{1}{\sqrt{2}(2\pi)^m} \left(\frac{\partial}{\sin t \partial t} \right)^{m-1} \int_{S^n} g(\theta') \Re \frac{1}{\sqrt{\cos(t) - \cos(d(\theta, \theta'))}} d\mu(\theta'),
\]

when \(n \) is even \((n = 2m) \), where \(d(\theta, \theta') \) is the spherical distance between \(\theta \) and \(\theta' \).

Corollary 2. (The radial wave equation in the spherical space one-dimensional) We let \(\mu \to \frac{1}{2} \) in Theorem 3. We obtain the solution of the Cauchy problem for the radial wave equation (see Theorem 2).

8. Numerical Trials

Example. When \(\nu = -\frac{1}{2} \) the radial wave problem

\[
(P) \begin{cases}
\left(\frac{\partial^2}{\partial x^2} + 2 \cot x \frac{\partial}{\partial x} - 1 \right) U(t, x) = \frac{\partial^2}{\partial t^2} U(t, x), \\
U(0, x) = 0, \quad U_t(0, x) = \sin x
\end{cases}
\]

has a unique solution given by

\[
U(t, x) = \frac{2t - \sin(2t) \cos(2x)}{4 \sin x}.
\]

We compare the exact solution with the approximate solution obtained by discretization of an interval \([A, B]\), \(A > 0 \) with a step \(\Delta x \) and a discretization of time with a step \(\Delta t \) (see Figure 1).

Let \(x_j = A + j\Delta x \), \(1 \leq j \leq n_x \), \(L = B - A \), \(\Delta x = L/(n_x + 1) \) and \(t_n = n_t\Delta t \).

Numerically solving the problem \((P)\) means finding a discrete function \(U \) defined in points \((x_j, t_n)\), we note \(U^n_j \) the values of \(U \) at these points. The function \(U \) is obtained as the solution of a discrete problem

\[
\left[1 - \theta - (1 - \eta)R_j \right] U^n_{j-1} + [2(1 - \theta) + r_1] U^n_j + [1 - \theta + (1 - \eta)R_j] U^{n+1}_{j+1}
\]

\[
= (\eta R_j - \theta) U^n_{j-1} + (2\theta - 2r_1 - r_2) U^n_j - (\theta + \eta R_j) U^{n+1}_{j+1} + \eta U^{n-1}_j
\]

\[
U^n_0 = 0, \quad U^n_{-1} = -(\Delta t) g(x_j),
\]

where \(r_1 = \frac{(\Delta x)^2}{(\Delta t)^2} \), \(r_2 = -(\Delta x)^2 \) and \(R_j = \frac{\Delta x}{\tan(x_j)} \). (We take \(A = 0.5 \), \(B = 3 \), \(n_x = 10 \), \(n_t = 30 \), \(\Delta t = 0.01 \) and \(\theta = \eta = 0.5 \).)
Figure 1: Representation of the two solutions to the radial wave problem

References

