ON THE DETERMINATION OF SOLUTIONS SETS REGARDING HIGHLY NON-LINEAR EQUATIONS SYSTEMS

Mahamat Saleh Daoussa Haggar\(^1\)\(^\S\), Benjamin Mampassi\(^2\)
\(^1\)Department of Mathematics
Faculty of Exact and Applied Sciences
N’Djamena University
BP: 1027, Code Postal: 00235, CHAD
\(^2\)Department of Mathematics
Faculty of Science and Technology
Dakar University, BP 5005, Code Postal: 00221, SENEGAL

Abstract: This paper proposes an approach for determining solutions sets of larger scale non linear equations systems with more unknowns number than equations. The proposed approach consists in transforming the equations system into a one dimensional equation by using \(\alpha\)-dense curves properties. Then conditions for obtaining sets that are dense in the set of solution is established. An example is provided to demonstrate merits of our proposed algorithm.

AMS Subject Classification: 34A35, 35F50, 57Q55
Key Words: nonlinear equations systems, Newton method, \(\alpha\)-dense curves

1. Introduction

Suppose that we are given with the system of nonlinear equations of type

\[F(x) = 0, \]

(1)

where \(F = (f_1, \ldots, f_p) : \mathbb{R}^n \rightarrow \mathbb{R}^p \) is a non linear function. Such a system
arises in many problems in sciences and engineering. This system may be formed by nonlinear algebraic, integral or transcendental equations and so on. Conditions of the existence of solution of the equation (1) are widely discussed in the literature. One can, for example, refer to [2]. Alternatively, in the case $n = p$, there exists a wide class of iterative methods for the numerical solution of the systems of type (1). Among them, the best-known ones is the Newton method which, starting with an initial guess, approaches a solution x^* of (1) by the following scheme

$$x^{k+1} = x^k - \left(F'(x^k)\right)^{-1}F(x^k), \quad k = 0, 1, \ldots, n. \quad (2)$$

Of course the use of this scheme requires at most the function F to be a continuously differentiable mapping on an open neighborhood of the solution x^*. Moreover, if the Jacobian $F'(x^k)$ is non singular and if F' is Lipschitz continuous then the Newton method converges quadratically to x^* provided that the initial guess x^0 is sufficiently closed to the solution x^*. Although the quadratic convergence is very attractive, the Newton’s method suffers that it efficiency depends on a good initial approximation [1] and, also its behaving is problematic when $F'(x^*)$ is singular. There exists a class of Newton’s method versions which try to provide some amelioration for obtaining the approximation of the solution with good convergence speed. Other classes of methods for numerical solution of the equation (1) use reduction to simple one-dimensional nonlinear equations. The best-known method of this type is the nonlinear successive overrelaxation (SOR) method [3]. A larger variety of combined methods can be constructed, [7]. A well known example is the m-step SOR-Newton process [3, 5, 6]. All these methods do not work efficiently for the numerical solutions of (1) where $n > p$. In this paper a new approach for approximating the set of the solutions of (1) is investigated.

This approach is global and does not depends on initial guess as in many numerical schemes which approximate only solutions that are closed to initial guesses. The rest of this paper is organized as follows. In Section 2 we describe a numerical approach for characterizing the set of the solution of the system (1). In Section 3 we establish and prove a density theorem, and in Section 4 we illustrate this approach on a number of numerical examples.
2. Description of the Method

Throughout this paper, x is a \mathbb{R}^n-vector whose components are denoted by x_1, \ldots, x_n and, the system (1) explicitly reads as

$$f_1(x_1, \ldots, x_n) = 0, f_2(x_1, \ldots, x_n) = 0, \ldots, f_p(x_1, \ldots, x_n) = 0. \quad (3)$$

We derive here an approach based on the idea which consists in transforming the system (3) onto a one-dimensional one. To this end we first see that the system (3) is equivalent to the following equation

$$G(x_1, \ldots, x_n) := \sum_{i=1}^{p} f^2_i(x_1, \ldots, x_n) = 0. \quad (4)$$

Note that the equivalence of (3) and (4) is seen in the sense that all solutions of the system (3) are also solutions of the equation (4) and conversely. Next we let the set of the solution of the equation (4) to be

$$S = \{(x_1, \ldots, x_n) \in \mathbb{R}^n / G(x_1, \ldots, x_n) = 0\}. \quad (5)$$

Hereafter we would like to approximate the set S. Our main idea for achieving this scheme comes from the reduction transformation described in [10] that consists in considering an α-dense curve of \mathbb{R}^n, that is

$$h_\alpha : \mathbb{R} \to \mathbb{R}^n \quad \theta \mapsto h_\alpha(\theta) = (h_\alpha^1(\theta), \ldots, h_\alpha^n(\theta)) \quad (6)$$

such that for each point $p \in \mathbb{R}^n$, there exists $\theta_p \in \mathbb{R}$ and

$$\| h_\alpha(\theta_p) - p \| \leq \alpha \quad (7)$$

where $\| \cdot \|$ denotes the \mathbb{R}^n Euclidian norm. There exists few papers from which α-dense curves in \mathbb{R}^n are constructed. One can, for example, refer to [4, 8, 9, 10]. Let us set

$$G_\alpha(\theta) = G(h_\alpha(\theta)) \quad (8)$$

and define

$$S_\alpha = \{ \theta \in \mathbb{R}^n / G_\alpha(\theta) = 0 \}, \quad (9)$$

then it is obvious to see that

$$S_\alpha \subset S. \quad (10)$$

Now we would like to discuss about conditions that ensure the set S_α to be dense in the set of solutions S. In what follows we establish this result:
Theorem 2.1. Assume that

(i) S is the compact set,

(ii) h_α is continuous and satisfies

$$\lim_{\theta \to +\infty} \| h_\alpha(\theta) \| = +\infty$$

(iii) and G is a β-Lipschitz continuous function.

Then for each P in S, there exists $\hat{\theta}$ in \mathbb{R} such that

$$\| P - h_\alpha(\hat{\theta}) \| \leq \alpha$$

and

$$| G \left(h_\alpha(\hat{\theta})\right) | \leq \beta \alpha.$$

Proof. Consider P in S. As S is compact, there is a sequence (P_k) that satisfies $G(P_k) = 0$ for each k and $\| P - P_k \| \to 0$. By the α-dense curve property, for each k there is a real θ_k such that

$$\| P_k - h_\alpha(\theta_k) \| \leq \alpha.$$

Therefore we can write

$$\| P - h_\alpha(\theta_k) \| \leq \| P - P_k \| + \alpha.$$

Since $\| P - h_\alpha(\theta_k) \| \to 0$, we deduce that the sequence $(h_\alpha(\theta_k))$ is bounded in \mathbb{R}. By assumption (iii) it follows that the sequence (θ_k) is bounded and consequently it admits a convergent subsequence also named by (θ_k). Then there is $\hat{\theta}$ such that $\theta_k \to \hat{\theta}$. By continuity of h_α we have

$$h_\alpha(\theta_k) \to h_\alpha(\hat{\theta}).$$

Also, by equations (14, 15, 16), since G is β-Lipschitz we have

$$| G(P_k) - G(h_\alpha(\theta_k)) | \leq \beta \alpha$$

and passing to the limit it follows

$$| G(P) - G(h_\alpha(\hat{\theta})) | \leq \beta \alpha.$$

Since $G(P) = 0$ by assumption then Theorem 1 follows. \square
Observe also that Theorem 1 is sharp in the sense that, for a sufficiently little value of α and where G has conveniently regularity properties then the S_α is dense in S in the following sense: for each P in S there is \widehat{P} in S_α such that $\|P - \widehat{P}\| \leq \alpha$. In such a way the conditions of the Theorem 1 permit to construct an approximation of the set of solutions of highly non linear equations systems of type (1). So that an algorithm for determining an approximation of this solution set can be summarized as follows.

- Read the discretisation parameter N
- Define the function $\theta \mapsto h_\alpha(\theta)$
- for $k = -N$ to N
 - determine $\hat{\theta}_k \in [k dt, (k + 1) dt]$ such that $F(h_\alpha(\hat{\theta}_k)) = 0$
 - set $S \ni h_\alpha(\theta_k)$.

3. An Example

There are various examples in the literature from which the set of the solutions of the system (3) by Newton methods are not very satisfactory. Here we consider in \mathbb{R}^3 the following equations system

$$
\begin{cases}
 f_1(x_1, x_2, x_3) = x_1^3 - x_1 x_2 x_3 = 0 \\
 f_2(x_1, x_2, x_3) = x_2^2 - x_1 x_3 = 0.
\end{cases}
$$

As described above we take the reduction transformation given by

$$
\theta \mapsto h_\alpha(\theta) = \begin{cases}
 x_1 = l \cos(\theta) \\
 x_2 = l \cos\left(\frac{\pi \sqrt{2} \theta}{\alpha}\right) \\
 x_3 = l \cos\left(\frac{\pi^2 \sqrt{6} \theta}{\alpha^2}\right).
\end{cases}
$$

It is shown in [4] that this reduction transformation is α-dense in $[-l, l]^3$. According to Theorem 1, we define $G : \theta \mapsto f_1^2(h_\alpha(\theta)) + f_2^2(h_\alpha(\theta))$ and we solve locally the equation $G(\theta) = 0$ in each interval $[k dt, (k + 1) dt]$ for $k = -N, \ldots, N$. For our simulation we have taken $\alpha = 0.3$, $l = 10$. We used Matlab solver to compute the equation $G(\theta) = 0$ in the interval $[k dt, (k + 1) dt]$ by considering $k dt$ as the initial guess. Then the approximated solution set in $[-10, 10]^3$ is represented in Figure 1.
Figure 1: An illustration of the approximation of the solution set of the system (19) in $[-10, 10]^3$ with $dt = 0.5$ on the left and $dt = 0.1$ on the right.

References

