NEW CONSTRUCTION TECHNIQUE FOR
q-ARY HAMMING CODES FOR r = 2, q ≥ 3

Tarun Lata¹ §, Vinod Tyagi²
¹Department of Mathematics
University of Delhi
Delhi, 110007, INDIA
²Department of Mathematics
Shyamlal College (Evening)
University of Delhi
Delhi, 110032, INDIA

Abstract: In this paper, we explore a new construction technique for q-ary Hamming codes \([q + 1, q - 1, 3]\) for \(r = 2\) and \(q ≥ 3\) over GF(q).

We also establish its perfectness and investigate its duality by using the MDS property.

AMS Subject Classification: 11T71, 94B05, 94D35, 94B60
Key Words: linear code, generator matrix, parity-check matrix, perfect code, MDS code

1. Introduction

As binary codes are based on two symbols 0 and 1 and a q-ary code is based on q-symbols 0, 1, 2, . . . , q − 1. For \(d = r + 1\) and size of the code \(N = q^k\). These codes are called MDS codes since they have maximum possible distance for given code size \(N\) and codeword length \(n\) [6].

According to Peterson et al. [4], every residue class modulo \(q\) contains either 0 or a positive integer less than \(q\). Zero is an element of the ideal and each positive integer less than \(q\) is in a distinct residue class. It follows from the
above theorem that the list \(\{0\}, \{1\}, \{2\}, \ldots \{q-1\} \) includes each class once and only once. Another important theorem [4] gives the concept of prime fields or Galois field of \(q \) elements which we consider throughout this paper. According to the theorem, residue classes of integers modulo any positive prime integer \(q \) from a field of \(q \) elements known as Galois field \(\text{GF}(q) \).

A linear code of length \(n \), rank \(k \) and minimum weight \(d \) is called \([n, k, d]\) code. If \(V \) is a linear code with minimum distance \(d \), then \(V \) can correct \(t = \left\lfloor \frac{d-1}{2} \right\rfloor \) or fewer errors and conversely.

In this paper we consider only non-binary codes over \(\text{GF}(q) \), \(q \geq 3 \). It is organized as follows: We give detailed description of the construction of a \([q+1, q-1]\) linear code, \(V \) in Section 2. We show that the code \(V \) and its dual \(V^\perp \) are MDS code in Section 3. In Section 4, we prove that \([q+1, q-1, 3]\) linear code is a perfect code, whereas in Section 5, we give the decoding procedure. This is followed by an example for \(q = 3 \) in Section 6. Open problems are given in Section 7.

2. Construction

As we know, \(\text{GF}(q) \) is a Galois field of order \(q \), \(q \geq 3 \). The Cartesian product \(\text{GF}(q) \times \text{GF}(q) \) comprises the distinct \(q^2 \) pairs, i.e.

\[|\text{GF}(q) \times \text{GF}(q)| = q^2. \]

The number of non-zero elements of \(\text{GF}(q) \times \text{GF}(q) = q^2 - 1 \). We can split the \((q^2 - 1)\) non-zero elements into \((q + 1)\) disjoint sets:

\[
S_1 = (1, 1), (2, 2), \ldots, (q - 1, q - 1),
S_2 = (1, 2), (2, 4), \ldots, (q - 1, 2(q - 1)),
\vdots
S_{q-2} = (1, q - 2), (2, 2q - 4), \ldots, (q - 1, (q - 2)(q - 1)),
S_{q-1} = (1, q - 1), (2, 2q - 2), \ldots, (q - 1, (q - 1)^2),
S_q = (1, 0), (2, 0), \ldots, (q - 1, 0),
S_{q+1} = (0, 1), (0, 2), \ldots, (0, q - 1),
\]

where any two pairs of the same set are multiples of each other over \(\text{GF}(q) \).

For the construction of parity check matrix, we take \((q + 1)\) pairs one from each set namely \((1, 1), (1, 2), \ldots, (1, 0), (0, 1)\) from \(S_1, S_2, \ldots, S_{q+1} \) respectively
and use their transposes to form the following $2 \times (q + 1)$ parity check matrix H:

$$H = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 0 \\ 1 & 2 & \cdots & q - 1 & 0 & 1 \end{bmatrix} \quad (2.1)$$

or

$$H = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & q - 1 & I_2 \end{bmatrix}.$$

Let $V = \{ x = (x_1, x_2, \ldots, x_{q+1}) \in \text{GF}(q)^{q+1} \mid Hx^T = 0 \}$. Then V is a subspace of $\text{GF}(q)^{q+1}$ and therefore a linear code over $\text{GF}(q)$. Further, $Hx^T = 0$ implies that

\[
\begin{align*}
\begin{cases}
 x_1 + x_2 + \ldots + x_{q-1} + x_q = 0 \\
 x_1 + 2x_2 + \ldots + (q - 1)x_{q-1} + x_{q+1} = 0
\end{cases}
\end{align*}
\]

which then yields:

\[
\begin{align*}
x_q &= (q - 1)x_1 + (q - 1)x_2 + \ldots + (q - 1)x_{q-1}, \\
x_{q+1} &= (q - 1)x_1 + (q - 2)x_2 + \ldots + 2x_{q-2} + x_{q-1},
\end{align*}
\]

since $x_1, x_2, \ldots, x_{q-1}$ are independent variables and x_q and x_{q+1} are dependent variables.

We can assign to $x_1, x_2, \ldots, x_{q-1}$ conveniently chosen values. Thus we set $x_1 = 1$ and $x_2 = x_3 = \ldots = x_{q-1} = 0$ and get $x_q = q - 1$ and $x_{q+1} = q - 1$.

Thus, $(1, 0, 0, \ldots, 0, q - 1, q - 1)$ is a solution of (2.2). Similarly, $(0, 1, \ldots, 0, q - 1, q - 2), (0, 0, 1, \ldots, 0, q - 1, q - 3) \ldots$ and $(0, 0, 0, \ldots, 1, q - 1, 1)$ are $(q - 1)$ codewords of V. Since they are independent, we can use these codewords to form a $(q - 1) \times (q + 1)$ generator matrix G of V given by

\[
G = \begin{bmatrix} 1 & 0 & \cdots & 0 & q - 1 & q - 1 \\ 0 & 1 & \cdots & 0 & q - 1 & q - 2 \\ 0 & 0 & \cdots & 0 & q - 1 & q - 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & q - 1 & 1 \end{bmatrix}
\]

or

\[
G = \begin{bmatrix} q - 1 & q - 1 \\ q - 1 & q - 2 \\ q - 1 & q - 3 \\ \vdots & \vdots \\ q - 1 & 1 \end{bmatrix}.
\]
By this way, we have shown the construction of the \([q + 1, q - 1, d] \) code for all values of \(q \geq 3\).

3. MDS Code

In order to show that \([q + 1, q - 1, d] \) code is a MDS code, we have to show that the minimum weight of the code is 3. As we know that the number of codewords in a \(q\)-ary code is always the power of \(q\). If the rank of the parity check matrix \(H\) is \(r = n - k\), then the number of codewords is \(q^{n-k}\).

Singleton [6] has proved the following theorem that relates distance with the columns of the check matrix \(H\).

Theorem 3.1. A linear \(q\)-ary code with parity check matrix \(H\) has (minimum) \(q\)-ary distance \(d\) if and only if

(i) every subset of \(d - 1\) columns of \(H\) is linearly independent,

(ii) Subset of \(d\) columns of \(H\) is linearly dependent.

Corollary 3.1. For a linear \(q\)-ary code, \(d = r + 1\) if and only if every set of \(r\) columns of its parity check matrix \(H\) is linearly independent.

Corollary 3.2. If the parity check matrix of a linear \(q\)-ary code is of the form \(H = [A \ I]\), then \(d = r + 1\) if and only if every square submatrix of order \(j\) within \(A\) where \(1 \leq j \leq \min(r, k)\) has a non zero determinant.

Discussion

We can write the parity check matrix \(H\) in equation (2.1) as

\[
H = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1 & 0 \\
1 & 2 & 3 & \cdots & q-1 & 0 & 1
\end{bmatrix}.
\]

We can write \(H\) as

\[
H = [A \ I],
\]

where \(A = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 3 & \cdots & q-1
\end{bmatrix}\) and \(I = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}\).

Every pair of two columns of H is linearly independent and every column of A can be formed by the linear combination of columns of I.

Since every square submatrix of order 1 and 2 within A has a non-zero determinant. So, by Theorem 3.1, Corollary 3.1 and Corollary 3.2, the minimum distance d of H is 3 and $d = n - k + 1$.

Hence the linear code V is a MDS code. We also know that dual of a MDS code is also MDS. So, the dual of V, denoted by V^\perp, is also a MDS code.

The minimum weight of the $[q + 1, q - 1]$ Hamming code V over GF(q) is 3. So, is a single error correcting code.

It follows from the fact that if d is the minimum weight of a code V. Then V can correct $t = \left\lfloor \frac{d-1}{2} \right\rfloor$ or fewer errors.

Since the minimum distance d of V is 3. Then $t = \left\lfloor \frac{3-1}{2} \right\rfloor = 1$.

Let $V^\perp = \{ u \in GF(q)^{q+1} | u \cdot v = 0 \ \forall \ v \in V \}$.

Then V^\perp is the dual code of V. We know that dual of MDS code is also MDS code. So, V^\perp is a $[q+1, 2]$ code with minimum distance $q+1-2+1 = q$.

Thus, V^\perp can correct $\frac{q-1}{2}$ errors.

So, we have shown that the $[q + 1, q - 1, 3]$ code, V and its dual are MDS codes over GF(q) for all values of $q \geq 3$.

4. Perfect Code

An $[n, k]$ linear code V of minimum weight $d = 2t + 1$ over GF(q) is said to be perfect if the code V will correct all error patterns of weight less than or equal to t and no other error patterns.

Thus, we can say that a $[q + 1, q - 1, 3]$ q-ary Hamming code is said to be perfect if it corrects all error pattern of weight 1 and no other error patterns.

Now, we take distinct non-zero $(q + 1)$-tuple (error patterns) in which only one element is non-zero and others are zero, for all $1 \leq i \leq q - 1$ and find distinct $(q + 1)$ syndrome for each $1 \leq i \leq q - 1$.

<table>
<thead>
<tr>
<th>Error-Pattern</th>
<th>Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i \ (1,0,0,\ldots,0,0,0,0)$</td>
<td>$i \ (1 \ 1)$</td>
</tr>
<tr>
<td>$i \ (0,1,0,\ldots,0,0,0,0)$</td>
<td>$i \ (1 \ 2)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$i \ (0,0,0,\ldots,0,1,0,0)$</td>
<td>$i \ (1 \ q-1)$</td>
</tr>
<tr>
<td>$i \ (0,0,0,\ldots,0,0,1,0)$</td>
<td>$i \ (1 \ 0)$</td>
</tr>
<tr>
<td>$i \ (0,0,0,\ldots,0,0,0,1)$</td>
<td>$i \ (0 \ 1)$</td>
</tr>
</tbody>
</table>
Here, total number of distinct non-zero error-patterns =
\[(q - 1)(q + 1) = q^2 - 1.\]
Hence, by the condition given above, code \(V \) is a perfect code.

5. Decoding Algorithm

We conclude this paper by presenting decoding procedure for \(q \)-ary \([q+1, q-1, 3]\)
code in the following steps:

Step 1: Form \(H \).

Step 2: Compute \(Hr^T \), where \(r \) is the received vector.

(a) If \(Hr^T = \alpha \cdot j^{th} \) column of \(H \), where \(j \in \{1, 2, \ldots, q - 1\} \) and \(\alpha \in \text{GF}(q) \) such that \(\alpha \neq 0 \), the error has occurred in the the \(j^{th} \) co-ordinate of the sent code word, \(v \) and the error vector, \(e \) has field element \(\alpha \) in its \(j^{th} \) co-ordinate and zeros in other co-
ordinates.
So, \(e = (0, 0, \ldots, \alpha, \ldots, 0, 0) \), where \(\alpha \) is the \(j^{th} \) co-ordinate of \(e \).

(b) If \(Hr^T = 0 \), then there is no error,
i.e. \(r \) is a codeword of \(V \).

Suppose we want to send the code vector \(v = (1, 1, 1, \ldots, 1, 0) \) which is received
at the receiving end as \(r = (1, 1, 3, 1, \ldots, 1, 0) \). Then error vector, \(e = r - v = (0, 0, 2, 0, \ldots, 0) \). Now, to recover the code vector \(v \) from \(r \).

We compute \(Hr^T \) as follows:

\[
Hr^T = H(v + e)^T.
\]
Since \(v \in \text{ker} \, H \), then \(Hv^T = [0 \quad 0] \).

\[
Hr^T = [0 \quad 0] + 2 [1 \quad 3] = 2 [1 \quad 3]
\]
\[
= 2 \cdot 3^{rd} \text{ column of } H.
\]
This shows that error vector \(e \) contains the field element 2 in the 3\(^{rd}\) co-ordinate and error has occurred in the 3\(^{rd}\) co-ordinate of the code vector \(v \). Since \(e = r - v \), we obtain \(v \) from \(r - e \).

\[
v = r - e = (1, 1, 3, 1, 1, \ldots, 1, 0) - (0, 0, 2, 0, 0, \ldots, 0).
\]
\[
\Rightarrow v = (1, 1, 1, 1, \ldots, 1, 0).
\]
6. Conclusion

In this section, we discuss our work with the help of an illustration for \(q = 3 \) which follows as:

GF(3) comprises 0, 1 and 2.

\(|\text{GF}(3) \times \text{GF}(3)| = 9\). The number of non-zero elements of \(\text{GF}(3) \times \text{GF}(3)\) = 9 - 1 = 8.

We can split the 8 non-zero elements into 4 disjoint sets:

\(S_1 = (1, 1), (2, 2) \), \(S_2 = (1, 2), (2, 1) \), \(S_3 = (1, 0), (2, 0) \), \(S_4 = (0, 1), (0, 2) \).

Now, we form parity-check matrix by taking 4 pairs, one from each set, namely (1,1), (1,2), (1,0), (0,1) from \(S_1, S_2, S_3, S_4 \), respectively and use their transpose to form the following 2 × 4 parity-check matrix \(H_1 \):

\[
H_1 = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{bmatrix}.
\]

Let \(V_1 = \{ x = (x_1, x_2, x_3, x_4) \in \text{GF}(3)^4 \mid H_1 x^T = 0 \} \).

\(H_1 x^T = 0 \) implies that

\[
\begin{align*}
x_1 + x_2 + x_3 &= 0 \\
x_1 + 2x_2 + x_4 &= 0
\end{align*}
\]

which then yields

\[
\begin{align*}
x_3 &= 2x_1 + 2x_2, \\
x_4 &= 2x_1 + x_2.
\end{align*}
\]

Here, \(x_1 \) and \(x_2 \) are independent variables and \(x_3, x_4 \) are dependent variables.

Setting \(x_1 = 1 \) and \(x_2 = 0 \), we get (1,0,2,2) is a solution of (6.1) and by setting \(x_1 = 0 \) and \(x_2 = 1 \), we get (0,1,2,1) as another solution of (6.1).

(1,0,2,2) and (0,1,2,1) are 2 codewords of \(V_1 \) and form its generator matrix \(G_1 \):

\[
G_1 = \begin{bmatrix}
1 & 0 & 2 & 2 \\
0 & 1 & 2 & 1
\end{bmatrix}.
\]

\(V_1, [4,2,3] \) code is a MDS code and corrects 1 error.

\(V_1^\perp, [4,2,3] \) code is also a MDS code which can correct 1 error.

Now we discuss the perfectness of \(V_1 \) by Error-Pattern Syndrome table:
The total non-zero distinct error pattern $= 8 = 3^2 - 1$. Hence, V_1 is a perfect code over GF(3).

Elora et al. [1] have already proved the perfectness of code for $q = 5$ by another method. We have also verified the above results for $q = 7, 11, 13$.

7. Open Problem

In this paper we have shown a general construction method of q-ary Hamming codes for prime field/Galois field. We have not been able to justify the result for the field of polynomials over GF(q) modulo an irreducible polynomial of degree m which is known as the Galois field of q^m elements of GF(q^m).

References

