ON THE GEOMETRY OF CLOSED TIMELIKE RULED SURFACES IN DUAL LORENTZIAN SPACE

Ziya Yapar, Yasemin Sağiroğlu
Mathematics Department
Science Faculty
Karadeniz Technical University
Trabzon, 61080, TURKEY

Abstract: In this paper, a dual timelike curve $c(t)$ which is a Lorentzian spherical indicatrix of a timelike closed ruled surface $(\vec{V}_1^*(t))$ with a real parameter t, two frames $D^*(\vec{V}_1^*, \vec{V}_2^*, \vec{V}_3^*)$ related to the timelike closed ruled surface $(\vec{V}_1^*(t))$ and $D(\vec{V}_1, \vec{V}_2, \vec{V}_3)$ which moves respect to D^* and related to a timelike closed ruled surface drawn by a timelike vector $\vec{V}_1(t)$, and a timelike vector \vec{V} which is fixed in the frame D are considered; and dual integral invariants of the timelike closed ruled surfaces which correspond to the dual timelike closed curves drawn by the vectors \vec{V}, \vec{V}_1 and \vec{V}_1^* are studied; and it is found same relations among the dual integral invariants of the timelike closed ruled surfaces which correspond to the dual timelike closed curves drawn by the timelike vectors \vec{V}, \vec{V}_1 and \vec{V}_1^*. In addition, these results are carried to the Lorentzian line space \mathbb{R}^3_1 and give some theorems by means of Study’s mapping.

AMS Subject Classification: 53A17, 53B30
Key Words: integral invariants, ruled surface, dual spherical motion

Received: September 30, 2015 © 2016 Academic Publications

§Correspondence author
1. Introduction

The geometry of ruled surface is very important in the study of kinematics or spatial mechanism, surface design, manufacturing technology, robotic research in \mathbb{R}^3, [4,5,6,7,8,22]. It is well known, from [10] that a V_1− closed ruled surface generated by V_1− oriented line of rigid body have two real integral invariants; the real pitch l_{V_1} and the real angle of λ_{V_1}.

In recent years, by using the real integral invariants of closed ruled surfaces, many investigations are done, [3,9,23]. In addition, by using Lorentzian metric, ruled surfaces in Lorentz space have been studied [1,11,12,15,16,20].

In this paper, a dual closed spherical motion given by [24] is considered in the dual Lorentzian 3− space \mathbb{D}^3_1. During this motion, same relations among the dual integral invariants of the timelike ruled surfaces drawn by the timelike vectors \vec{V}, \vec{V}_1 and \vec{V}_1^* are given. In addition, separating real and dual parts of these dual integral invariants, some results and some theorems related to Holditch Theorem are given in the Lorentzian 3-space \mathbb{R}^3_1 by Study’s mapping.

2. Basic Concepts

We recall some fundamental concepts of the subject. If a and a^* are real numbers and $\epsilon^2 = 0$, the combination $A = a + \epsilon a^*$ is called a dual number, where ϵ is dual unit. The set of all dual numbers forms a commutative ring over the real number field and is denoted by \mathbb{D}.

Let us consider Lorentzian 3− space $\mathbb{R}^3_1 = [\mathbb{R}^3, (-, +, +)]$ and the Lorentzian inner product of $\vec{A} = (a_1, a_2, a_3)$ and $\vec{B} = (b_1, b_2, b_3) \in \mathbb{R}^3_1$ be $\langle \vec{A}, \vec{B} \rangle = -a_1b_1 + a_2b_2 + a_3b_3$.

The vector $\vec{A} = (a_1, a_2, a_3) \in \mathbb{R}^3_1$ is said to be timelike if $\langle \vec{A}, \vec{A} \rangle < 0$, spacelike if $\langle \vec{A}, \vec{A} \rangle > 0$ or $\vec{A} = 0$ and lightlike (null) if $\langle \vec{A}, \vec{A} \rangle = 0$ and $\vec{A} \neq \vec{0}$.

Consider moving unit dual Lorentzian sphere K generated by a dual orthonormal system $(0; \vec{V}_1, \vec{V}_2, \vec{V}_3)$ and fixed unit dual Lorentzian sphere generated by a dual orthonormal system $(0; \vec{V}_1^*, \vec{V}_2^*, \vec{V}_3^*)$.

Definition 1. Consider a non-singular linear transformation between two dual orthonormal coordinate systems linked to the unit dual Lorentzian spheres K (moving) and K_1 (fixed), respectively. In the case that the corresponding matrix is an orthogonal matrix whose elements are differentiable dual func-
tions of a real parameter t, the transformation is called a one-parameter dual Lorentzian spherical motion and denoted by K/K_1.

Theorem 2. ([19]) There exists one-to-one correspondence between directed timelike (resp. spacelike) lines of \mathbb{R}^3_1 and an ordered pair of vectors (\vec{a}, \vec{a}^*) such that $<\vec{a}, \vec{a}> = -1$ (resp. $<\vec{a}, \vec{a}> = 1$) and $<\vec{a}, \vec{a}^*> = 0$.

Definition 3. A timelike closed ruled surface (X) is one-to-one correspondence with a dual closed curve on the Lorentzian sphere, [18].

Let \(\{\vec{V}_1, \vec{V}_2, \vec{V}_3\} \) and \(\{\vec{V}_1^*, \vec{V}_2^*, \vec{V}_3^*\} \) be two right-handed sets of orthonormal unit dual vectors that are rigidly linked to the Lorentzian dual spheres K and K_1, and denoted by

\[
\vec{V} = \begin{pmatrix} \vec{V}_1 \\ \vec{V}_2 \\ \vec{V}_3 \end{pmatrix}, \quad \vec{V}^* = \begin{pmatrix} \vec{V}_1^* \\ \vec{V}_2^* \\ \vec{V}_3^* \end{pmatrix},
\]

respectively. Between frames \vec{V} and \vec{V}^*, the relation

\[
\Omega = \begin{pmatrix} 0 & W^2_1 & W^3_1 \\ W^2_1 & 0 & -W^3_2 \\ W^3_1 & W^3_2 & 0 \end{pmatrix}
\]

is given by [13]. We assume that $\vec{V}_3, \vec{V}_2, \vec{V}_3^*$ and \vec{V}_2^* are spacelike dual vectors, \vec{V}_1 and \vec{V}_1^* are timelike dual vectors in D^3_1.

Definition 4. Let $\vec{\psi}$ be a dual pfaf vector during the dual motion K/K_1. The dual vector \vec{D} is defined by

\[
\vec{D} = \oint \vec{\psi} = \oint (W^3_2 \vec{V}_1 + W^3_1 \vec{V}_2 - W^2_1 \vec{V}_3) = \vec{d} + \epsilon \vec{d}^*
\]

is called dual Steiner vector of the dual motion K/K_1, [13].

Definition 5. The dual angle of pitch of a timelike closed ruled surface $(X(t))$ is given by [17] as

\[
\Lambda_x = -<\vec{D}, \vec{X}>
\]
3. Dual Angles of Pitch of Closed Ruled Surfaces Drawn on the Fixed Dual Sphere K_1 by Vectors $\vec{V}, \vec{V}_1,$ and \vec{V}_1^*

Let us choose a fixed dual point \vec{V}_1^* which is on the unit dual moving Lorentzian sphere K. During the one-parameter dual Lorentzian spherical closed motion K/K_1, for every t, there is a constant dual angle ϕ between the vector \vec{V}_1^* and unit dual vector \vec{V}_1 of the moving Lorentzian sphere K, i.e., let us choose

$$< \vec{V}_1, \vec{V}_1^* > = \cosh \phi.$$ (5)

During the dual closed Lorentzian spherical motion K/K_1, \vec{V}_1 and \vec{V}_1^* draw two closed spherical curves on the unit dual fixed Lorentzian sphere K_1. These curves correspond to two closed ruled surfaces in the fixed line space H_1 by Study’s mapping. Let us denote the closed ruled surfaces drawn by the vectors \vec{V}_1 and \vec{V}_1^* by (\vec{V}_1) and (\vec{V}_1^*), respectively.

Consider $\{\vec{V}_1, \vec{V}_2, \vec{V}_3\}$ and $\{\vec{V}_1^*, \vec{V}_2^*, \vec{V}_3^*\}$ two sets of orthonormal unit dual vectors that are rigidly linked to the Lorentzian spheres K and K_1, and denoted by

$$D(\vec{V}_1, \vec{V}_2, \vec{V}_3), \quad D^*(\vec{V}_1^*, \vec{V}_2^*, \vec{V}_3^*)$$ (6)

respectively, where frames D and D^* are taken form by the vectors \vec{V}_1 and \vec{V}_1^*, respectively.

These two frames are rigidly linked to D and D^* by

$$\vec{V}_3 = \frac{\vec{v}_1 \times \vec{v}_1^*}{\sinh \phi},$$
$$\vec{V}_2 = \vec{V}_3 \times \vec{V}_1,$$
$$\vec{V}_3^* = -\vec{V}_3^*,$$
$$\vec{V}_2^* = \vec{V}_3^* \times \vec{V}_1^*.$$ (7)

Thus, for the vectors \vec{V}_1 and \vec{V}_1^* we have

$$\vec{V}_1^* = \cosh \phi \vec{V}_1 + \sinh \phi \vec{V}_2$$
$$\vec{V}_2^* = \sinh \phi \vec{V}_1 + \cosh \phi \vec{V}_2,$$ (8)

or

$$\vec{V}_1 = \cosh \phi \vec{V}_1^* + \sinh \phi \vec{V}_2^*$$
$$\vec{V}_2 = \sinh \phi \vec{V}_1^* + \cosh \phi \vec{V}_2^*,$$
$$\vec{V}_3 = -\vec{V}_3^*, \quad (\phi = \varphi + \epsilon \varphi^*)$$ (9)
Let us denote the dual hyperbolic angle of the vectors \vec{V}_1 and \vec{V} by Δ and the angle of the vectors \vec{V}_1 and \vec{V}_1^* by ϕ.

Let us consider an unit dual timelike vector \vec{V} which is fixed in the orthonormal frame D and expressed as follows:

$$\vec{V} = \cosh \Delta \vec{V}_1 + \sinh \Delta \cos \Theta \vec{V}_2 + \sinh \Delta \sin \Theta \vec{V}_3,$$

(10)

$$(\Delta = \alpha + \epsilon \alpha^*, \Theta = \theta + \epsilon \theta^*),$$

where \vec{V}_1 is timelike.

In addition, unit dual timelike vector \vec{V} with respect to dual orthonormal frame D^* by equations (9) and (10) also is written as follows:

$$\vec{V} = (\cosh \Delta \cosh \phi + \sinh \Delta \sinh \phi \cos \Theta)\vec{V}_1^*$$

$$+ (\cosh \Delta \sinh \phi + \sinh \Delta \cosh \phi \cos \Theta)\vec{V}_2^* - \sinh \Delta \sin \Theta \vec{V}_3^*.$$

(11)

By means of equation (10)

$$<\vec{V}_1, \vec{V}> = \cosh \Delta.$$ (12)

In the same way

$$<\vec{V}_1^*, \vec{V}> = \cosh W.$$ (13)

Equation (13) by means of equation (11) is written as follows:

$$\cosh W = \cosh \Delta \cosh \phi + \sinh \Delta \sinh \phi \cos \Theta.$$ (15)

For $\Theta = 0$, from equation (13)

$$\cosh W = \cosh \Delta \cosh \phi + \sinh \Delta \sinh \phi = \cosh(\Delta + \phi),$$ (14)

or $W = \Delta + \phi$ is obtained.

In addition, constant dual hyperbolic angles Δ_i and W_i which are among the unit dual vectors (\vec{V}_i, \vec{V}) and (\vec{V}_i^*, \vec{V}) are given as follows:

$$\cosh \Delta_i = <\vec{V}_i, \vec{V}>$$

and

$$\cosh W_i = <\vec{V}_i^*, \vec{V}>, \quad (i = 1, 2, 3),$$ (15)

respectively.

From equations (10) and (11), the relations among constant angles Δ_i and W_i as depend on the angles Δ, ϕ and Θ are obtained.
Thus, during the dual Lorentzian motion K/K_1 we may consider the timelike closed ruled surface drawn by the timelike vector \vec{V} which is fixed in the orthonormal frames D and D^*. This timelike closed ruled surface is expressed as (\vec{V}).

Dual angle of pitch of the timelike closed ruled surface (\vec{V}) by means of equations (3) and (4) is written as follows:

$$\Lambda_V = - \langle \vec{D}, \vec{V} \rangle.$$ (16)

Thus, from equations (10) and (16)

$$\Lambda_V = \cosh \Delta \oint W_2^3 - \sinh \Delta \cos \Theta \oint W_1^3 + \sinh \Delta \sin \Theta \oint W_1^2$$ (17)

is obtained.

The integral $\oint W_2^3$ is the dual angle of pitch of the timelike closed ruled surface (\vec{V}_1). In this case

$$\Lambda_{V_1} = \oint W_2^3 = - \langle \vec{D}, \vec{V}_1 \rangle,$$ (18)

may be written.

In addition, because of this also stated the unit dual timelike vector \vec{V} according to the frame D^*, in the same way

$$\Lambda_V = - \langle \vec{D}^*, \vec{V}^* \rangle,$$ (19)

may be written, where \vec{D}^* is given as follows:

$$\vec{D}^* = \oint [(W_2^3)^* \vec{V}_1 + (W_1^3)^* \vec{V}_2^* - (W_1^2)^* \vec{V}_3^*].$$ (20)

The integral $\oint (W_3^3)$ may be consider as a function of the dual angle of pitch Λ_{V_1} and $\Lambda_{V_1^*}$ of the timelike closed ruled surfaces (\vec{V}_1) and (\vec{V}_1^*), respectively. For this case, we consider the dual angle of pitch of the closed ruled surface (\vec{V}_1^*). Thus, from the equations (18) and (16), $\Lambda_{V_1^*}$ is written as follows:

$$\Lambda_{V_1^*} = - \langle \vec{D}^*, \cosh \phi \vec{V}_1 + \sinh \phi \vec{V}_2 \rangle,$$

or

$$\Lambda_{V_1^*} = \cosh \phi \oint W_2^3 - \sinh \phi \oint W_1^3.$$ (21)
Thus, equation (21) is written as follows:

$$\Lambda_{V_1^*} = \Lambda_{V_1} \cosh \phi - \sinh \phi \oint W_1^3.$$ (22)

From equation (22), for the integral $-\oint W_1^3$ we have

$$-\oint W_1^3 = \frac{1}{\sinh \phi} (\Lambda_{V_1^*} - \Lambda_{V_1} \cosh \phi).$$ (23)

For meaning of integral $\oint W_1^2$ we use equalities in the following:

$$\oint W_1^2 = \oint [d, W_1^2] = \oint [W_3, W_1^2] = a_{V_3}$$ (24)

is obtained, where ∂G_3 is the dual Lorentzian spherical area bounded on the fixed dual Lorentzian sphere by the dual Lorentzian spherical indicatrix of the spacelike vector \vec{V}_3 [19]. Thus, from equations (17), (18), (23) and (24)

$$\Lambda_V = \Lambda_{V_1} \cosh \Delta + \frac{\sinh \Delta \cos \Theta}{\sinh \phi} (\Lambda_{V_1^*} - \Lambda_{V_1} \cosh \phi) + \sinh \Delta \sin \Theta a_{V_3},$$

or

$$\Lambda_V = \frac{1}{\sinh \phi} (\cosh \Delta \sinh \phi - \sinh \Delta \cos \Theta \cosh \phi) \Lambda_{V_1} +$$

$$+ \frac{1}{\sinh \phi} \sinh \Delta \cos \Theta \Lambda_{V_1^*} + \sinh \Delta \sin \Theta a_{V_3}$$ (25)

is obtained.

Equation (25) may be also written by the angles Δ_i and W_1 as follows:

$$\Lambda_V = \Lambda_{V_1} \cosh W_2 \frac{\sinh \phi}{\sinh \phi} + \Lambda_{V_1^*} \cosh \Delta_2 \frac{\sinh \phi}{\sinh \phi} + \cosh \Delta_3 a_{V_3}.$$ (26)

If dual angle of pitch Λ_V is expressed according to the frame D^* from equations (11) and (19) some results are obtained. Thus, from equation (26) we have the following theorem.

Theorem 6. There is the relation (26) in the dual Lorentzian space \mathbb{D}_3^1, during the one-parameter dual closed Lorentzian spherical motion K/K_1, among the dual angle of pitch of the timelike closed ruled surface drawn by the timelike vector \vec{V} which moves along the timelike closed ruled surfaces (\vec{V}_1) and (\vec{V}_1^*), the dual angle of pitch of the timelike closed ruled surfaces (\vec{V}_1), (\vec{V}_1^*) and closed Lorentzian spherical area bounded on the fixed sphere by the indicatrix of the vector \vec{V}_3.

Now, let us consider some special cases. If the timelike vectors \vec{V}_1 and \vec{V}^*_1 draw the same ruled surface, then $\Lambda_{V_1} = \Lambda_{V^*_1}$.

In this case, we have only related to the moving along the timelike closed ruled surface (\vec{V}_1). Therefore, from equations (25) and (26) it is obtained in the following results:

$$\Lambda_V = \frac{\cosh W_2 + \cosh \Delta_2}{\sinh \phi} \Lambda_{V_1} + \cosh \Delta a_{V_3}. \quad (27)$$

Thus, we have the following theorem.

Theorem 7. During the one-parameter dual Lorentzian closed motion K/K_1, there is the relation (27) in the dual Lorentzian 3-space \mathbb{D}^3_1, among the dual angle of pitch of the timelike closed ruled surface drawn by the time-like vector \vec{V} which is fixed in the frame D, the angle of pitch of the timelike closed ruled surface drawn by the timelike vector \vec{V}_1 and timelike closed dual Lorentzian spherical area bounded on the fixed dual sphere K_1 by the indicatrix of the vector \vec{V}_3.

Considering all the case, we choose fixed the timelike vector \vec{V} according to frames D and D^*. Now, let us take the timelike vectors \vec{V}_1, \vec{V}^*_1 and \vec{V} on a great Lorentzian circle of the moving unit dual Lorentzian sphere K. In this case, $\Theta = 0$.

Thus,

$$< \vec{V}, \vec{V}_3 > = 0 \quad (28)$$

by equation (7), from equation (14)

$$\cosh W = \cosh \Delta \cosh \phi + \sinh \Delta \sinh \phi = \cosh(\Delta + \phi) \quad (29)$$

or $\Delta = W - \phi$ is obtained.

In this case, during the one-parameter dual Lorentzian closed motion K/K_1 we again study the motion of the timelike vector \vec{V} which moves along the timelike closed ruled surfaces (\vec{V}_1) and (\vec{V}^*_1). When $\Theta = 0$, from equations (10) and (11) for the timelike vector \vec{V}, we have

$$\vec{V} = \cosh \Delta \vec{V}_1 + \sinh \Delta \vec{V}_2, \quad (30)$$

or

$$\vec{V} = \cosh(\Delta + \phi) \vec{V}^*_1 + \sinh(\Delta + \phi) \vec{V}^*_2. \quad (31)$$
Thus, from equations (25), (31) and \(\Theta = 0 \) the following result is obtained:

\[
\Lambda_V = \frac{\sinh(\Delta + \phi)}{\sinh \phi} \Lambda_{V_1} + \frac{\sinh \Delta}{\sinh \phi} \Lambda_{V_1}^*.
\]

(32)

Thus, the following theorem is given.

Theorem 8. During the one-parameter dual closed Lorentzian spherical motion related to the closed dual Lorentzian indicatrix of the timelike closed ruled surface \((\vec{V}_1^*)\), there is the relation (32) in the Lorentzian 3-space \(\mathbb{D}_1^3\), among the dual angle of pitch of the timelike closed ruled surface drawn by the timelike vector \(\vec{V}\) which is fixed in the frame \(D\), the angles of pitch of the timelike closed ruled surfaces drawn by the timelike vectors \(\vec{V}_1\) and \(\vec{V}_1^*\), respectively.

Separating real and dual parts of equation (32) we find

\[
\lambda_V = \frac{\sinh(\varphi + \alpha)}{\sinh \varphi} \lambda_{V_1} + \frac{\sinh \alpha}{\sinh \varphi} \lambda_{V_1}^*;
\]

(33)

and

\[
l_V = l_{V_1} \frac{\sinh(\varphi + \alpha)}{\sinh \varphi} + l_{V_1}^* \frac{\sinh \alpha}{\sinh \varphi} + \varphi^* \lambda_V \frac{\cosh \varphi}{\sinh \varphi} - \alpha^* \lambda_{V_1} \frac{\cosh \alpha}{\sinh \varphi} - \lambda_{V_1} (\varphi^* + \alpha^*) \frac{\cosh(\varphi + \alpha)}{\sinh \varphi}.
\]

(34)

Thus, we give the following theorem in the line space \(\mathbb{R}_1^3\).

Theorem 9. During the one-parameter Lorentzian closed spatial motion \(H/H_1\) which corresponds to the one-parameter dual Lorentzian spherical closed motion \(K/K_1\) related to the closed dual Lorentzian spherical indicatrix of the timelike closed ruled surface \((\vec{V}_1^*)\), there are the relations (33) and (34) in the line space \(\mathbb{R}_1^3\), among the real angles of pitch and pitches of the timelike closed ruled surfaces drawn in \(H_1\) by the timelike line \(\vec{V}\) which is fixed in \(H\) and the timelike lines \(\vec{V}_1\) and \(\vec{V}_1^*\), respectively.

Now, we suppose that the timelike closed ruled surfaces \((\vec{V}_1)\) and \((\vec{V}_1^*)\) are the same. In this case, from equation (32) we get

\[
\Lambda_V = \frac{\sinh(\Delta + \phi) + \sinh \Delta}{\sinh \phi} \Lambda_{V_1};
\]

(35)
or
\[
\frac{\Lambda V}{\Lambda V_1} = \frac{\sinh(\Delta + \phi) + \sinh \Delta}{\sinh \phi}.
\] (36)

This result is important for us, because it is corresponds to Holditch Theorem for chosen Lorentzian spherical motion.

Therefore, the following theorem is given in dual Lorentzian space \(D_1^3 \).

Theorem 10. During the one-parameter closed Lorentzian spherical motion \(K/K_1 \) related to the closed dual Lorentzian indicatrix of the timelike closed ruled surface \((\vec{V}_1^\ast) \), the ratio of the dual angle of pitch of the timelike closed ruled surface drawn on \(K_1 \) by the fixed timelike vector \(\vec{V} \) in the moving frame \(D \) to the dual angle of pitch of the timelike closed ruled surface drawn on \(K_1 \) by the timelike vector \(\vec{V}_1 \) is constant and independent of the motion.

Let us separate real and dual parts of equation (35). In this case, we get
\[
\lambda_V \sinh \varphi = \lambda_{V_1} [\sinh(\alpha + \varphi) + \sinh \alpha],
\] (37)
or
\[
\frac{\lambda_V}{\lambda_{V_1}} = \frac{\sinh(\alpha + \varphi) + \sinh \alpha}{\sinh \varphi},
\] (38)
and
\[
l_V = l_{V_1} \left[\frac{\sinh(\alpha + \varphi) + \sinh \alpha}{\sinh \varphi} \right] - \\
- \lambda_{V_1} \left[\frac{(\varphi^* + \alpha^*) \cosh(\alpha + \varphi) + \alpha^* \cosh \alpha}{\sinh \varphi} \right] + \lambda_V \varphi^* \frac{\cosh \varphi}{\sinh \varphi}.
\] (39)

Then, we have the following theorems in the line space \(\mathbb{R}_1^3 \).

Theorem 11. When the timelike closed ruled surfaces \((\vec{V}_1) \) and \((\vec{V}_1^\ast) \) are the same, during the one-parameter Lorentzian closed spatial motion \(H/H_1 \) which corresponds to the dual Lorentzian spherical closed motion \(K/K_1 \) related to the closed dual Lorentzian spherical indicatrix of the timelike closed ruled surface \((\vec{V}_1 = \vec{V}_1^\ast) \), the ratio of the real angle of pitch of the timelike closed ruled surface drawn on \(H_1 \) by the fixed timelike vector \(\vec{V} \) in the moving frame \(D \) to the real angle of pitch of the timelike closed ruled surface drawn on \(H_1 \) by the timelike vector \(\vec{V}_1 \) is constant and independent of the Lorentzian motion and equal to the
\[
\frac{\lambda_V}{\lambda_{V_1}} = \frac{\sinh(\alpha + \varphi) + \sinh \alpha}{\sinh \varphi}.
\]
Theorem 12. When the timelike closed ruled surfaces (\vec{V}_1) and (\vec{V}^*_1) are the same, during the one-parameter Lorentzian closed spatial motion H/H_1 which corresponds to the dual Lorentzian spherical closed motion K/K_1 related to the closed dual Lorentzian spherical indicatrix of the timelike closed ruled surface $(\vec{V}_1 = \vec{V}^*_1)$, there is the relation (39), among the pitches and the real angles of pitch of the timelike closed ruled surfaces drawn in H_1 by the timelike line \vec{V} which is fixed in H and the timelike line \vec{V}^*_1.

References

