DISSIPATIVE NUMERICAL METHOD FOR AN OVERHEAD
CRANE MODEL WITH A FEEDBACK CONTROL FORCE
IN VELOCITY

Abstract

We present a numerical analysis on a control for the time evolution of a model of an overhead crane. This closed-loop system consists of a platform, which moves horizontally along a rail, a cable attached to the platform, and a load at its end. In the literature, it is known that it is asymptotically stable (cf. Saouri [#!saou!#]). This numerical analysis concerns the dissipative finite elements method (cf. Miletic [#!maja!#]) based on the P2 Lagrangian polynomials and a Crank-Nicholson time discretization. We prove that the numerical method dissipates the energy, analogous to the continuous case, for both discretizations semi and fully. Finally, we derive error bounds for both discretizations.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 1
Year: 2018

DOI: 10.12732/ijam.v31i1.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1]A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983).
  2. [2] R. Adams, Sobolev Spaces, Academic Press, New York (1975).
  3. [3] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer Science + Business Media, New York (2008).
  4. [4] H. Brezis, Analyse Fonctionnelle, Th´eorie et Applications, Masson, Paris (1983).
  5. [5] P.G. Ciarlet, Introduction l’Analyse Num´erique Matricielle et l'Optimisation, Masson, Paris (1982).
  6. [6] G. Strang, G. Fix, An Analysis of the Finite Element Method, PrenticeHall, Englewood Cliffs, New Jersey (1973).
  7. [7] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore (1989).
  8. [8] J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. 1, Springer, New York (1972).
  9. [9] Z.H. Luo, B.Z. Guo, ¨O. M¨orgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer, London (1999).
  10. [10] M.A. Naimark, Linear Differential Operators, Vol. 1, Springer, New York (1967).
  11. [11] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Vol. 68, Springer-Verlag, New York (1988).
  12. [12] J. Rappaz, M. Picasso, Introduction l'Analyse Num'erique, Presses Polytechniqueset Universitaires Romandes, New York (1998).
  13. [13] F.Z. Saouri, Stabilisation de Quelques Syst'emes Elastiques. Analyse Spectrale et Comportement Asymptotique, Th`ese de l’Universit´e Henry Poincar´e- Nancy I (2000).
  14. [14] M. Miletic, Stability Analysis and a Dissipative FEM for an Euler-Bernoulli Beam with Tip Body and Passivity-Based Boundary Control, PhD Thesis, Vienna University of Technology (2015).
  15. [15] A. Shkalikov, Boundary problem for ordinary differential operators with parameter in boundary conditions, J. Sov. Math., 33 (1986), 1311-1342.
  16. [16] B. Chentouf, J.M. Wang, Optimal energy decay for a nonhomogeneous flexible beam with a tip mass, J. Dyn. Control Systems, 13, No 1 (2007), 37-53.
  17. [17] K.A. Tour´e, E.P. Mensah, M.M. Taha, Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity, Journal of Nonlinear Analysis Application, 2014 (2014), 1-14.
  18. [18] S.M. Choo, S.K. Chung, R. Kannan, Finite element Galerkin solutions for the strongly damped extensible beam equations, Korean. J. and Appl. Math., 9, No 1 (2002), 27-43.