IDEALS IN SEMIRING WITH INVOLUTION

P. Dheena1, B. Elavarasan2§, K. Porselvi2

1Department of Mathematics
Annamalai University
Annamalainagar, 608002, INDIA

2Department of Mathematics
Karunya University
Coimbatore, 641 114, INDIA

Abstract: In this paper, we study the notion of $*$-prime ideal in semiring with involution and shown that if M is a non-void $*$-m-system in a semiring with involution and if I is a $*$-ideal of R with $I \cap M = \phi$, then there exists a $*$-prime ideal P of R such that $I \subseteq P$ and $P \cap M = \phi$. We also introduce the notion of $*$-k-prime ideal and we have shown that if P is a $*$-k-ideal of a semiring R with involution, then P is semiprime if and only if P is $*$-k-prime.

AMS Subject Classification: 16Y60
Key Words: semiring, involution, prime ideals, m-system and $*$-m-system

1. Introduction

The concept of semirings was introduced by H.S. Vandiver in 1935, and it has been studied by several authors. Throughout this paper R denotes a semiring. A semiring R is a non-empty set R together with two binary operation $+$ and \cdot such that:

i) $< R, + >$ is a commutative monoid with identity denoted by 0_R or simply 0,
ii) \(< R, \cdot, > \) is a semigroup,

iii) For every \(r, s, t \in R \), \(r(s + t) = rs + rt \) and \((s + t)r = sr + tr \),

iv) For every \(r \in R \), \(r0 = 0r = 0 \).

Recall from [3] that a semiring with involution is an algebra \(R = < R, +, \cdot, * > \) such that \(< R, +, \cdot, > \) is a semiring, and the following identities are satisfied:

\[
(a + b)^* = a^* + b^*; (ab)^* = b^*a^*; (a^*)^* = a.
\]

For any nonempty set \(S \), we define \(S^* = \{ s^* : s \in S \} \). Observe that involution of every non-zero element is non-zero. A non-empty subset \(I \) of a semiring \(R \) is called a left (resp. right) ideal of \(R \) if \(a + b \in I \), \(ra \in I \) (resp. \(ar \in I \)) for all \(a, b \in I \) and for all \(r \in R \). If \(I \) is both left and right ideal of \(R \), then \(I \) is called an ideal of \(R \). Following [2], we say that an ideal \(I \) of \(R \) is said to be \(*\)-ideal if \(I^* \subseteq I \). Clearly if \(I \) is \(*\)-one sided ideal of \(R \), then \(I \) is a \(*\)-ideal of \(R \). Observe that if \(K \) is an ideal of \(R \), then \(K^*K \), \(KK^* \), \(K \cap K^* \) and \(K + K^* \) are \(*\)-ideals of \(R \) and \(K^* \) is also an ideal of \(R \). An ideal \(P \) is said to be prime if whenever \(A, B \) are ideals of \(R \) such that \(AB \subseteq P \), then \(A \subseteq P \) or \(B \subseteq P \). Following [2], we say that a \(*\)-ideal \(P \) of \(R \) is said to be \(*\)-prime if whenever \(A, B \) are \(*\)-ideals of \(R \) such that \(AB \subseteq P \), then \(A \subseteq P \) or \(B \subseteq P \). Observe that if \(P \) is a prime and \(*\)-ideal of \(R \), then \(P \) is a \(*\)-prime ideal of \(R \). The following example shows that there exists a \(*\)-prime ideal of \(R \) which is not prime.

Example 1.1. Consider the ring \(Z_6 \) and commutative semiring \(B = B(3, 2) \) (F.E. Alarcon and D. Polkoska [1]).

Let \(R = Z_6 \oplus Z_6 \oplus B \) be a semiring. Define \(*\)-on \(R \) via \((a_1,a_2,b_1)^* = (a_2,a_1,b_1)\). Let \(A = \{0, 3\} \). Then \(P = (A, A, B) \) is a \(*\)-prime ideal but not a prime ideal, since if \(I = \{0, 2, 4\} \) and if \(B = (I, 0, 0) \) and \(C = (0, I, 0) \), then \(BC \subseteq P \) but neither \(B \) nor \(C \) is included in \(P \) and hence \(P \) is not prime.

But the notion of \(*\)-semiprime ideal and semiprime ideal are coincide. Indeed, if \(I \) is a \(*\)-semiprime ideal of \(R \) and \(J \) is an ideal of \(R \) with \(J^2 \subseteq I \). Then \((J^*)^2 \subseteq I \) and \((J + J^*)^2 = J^2 + JJ^* + J^*J + (J^*)^2 \subseteq J + I \) which imply \((J + J^*)^4 \subseteq I \), so \(J \subseteq J + J^* \subseteq I \).

In 1956, M. Henriksen [4] defined a more restricted class of ideals in semirings, which he called \(k \)-ideal. A left (resp. right) \(k \)-ideal \(I \) of \(R \) is called left (resp. right) \(k \)-ideal if \(a \in I \) and \(x \in R \) and if \(a + x \in I \), then \(x \in I \). If \(I \) is both left and right \(k \)-ideal of \(R \), then \(I \) is \(k \)-ideal of \(R \). Clearly intersection of \(k \)-ideals of \(R \) is again \(k \)-ideal of \(R \) and \(I \) is a \(k \)-ideal of \(R \) if and only if \(I^* \) is a \(k \)-ideal of \(R \). A \(*\)-\(k \)-ideal \(I \) is a \(k \)-ideal and \(I^* \subseteq I \). If \(I \) is a \(k \)-ideal of \(R \), then \(I \cap I^* \) is a \(*\)-\(k \)-ideal of \(R \). For subsets \(A, B \) of \(R \), we denote \((A : B)_l = \{ r \in R/rB \subseteq A \}\) and \((A : B)_r = \{ r \in R/Br \subseteq A \}\). For
any \(a \in R \), \(< a >\) the principle ideal of \(R \) generated by \(a \). One can easily prove that \(< a > = \{ na + sa + at + \sum_i s_i at_i / n \in N^+, s, t, s_i, t_i \in R \} \) and \(< a^* > = < a >^* \).

2. Main Results

Lemma 2.1. Let \(R \) be a semiring.

i) If \(A \) and \(B \) are left (resp. right) ideals of \(R \), then \((A : B)_l\) (resp. \((A : B)_r\)) is an ideal of \(R \).

ii) If \(A \) and \(B \) are left (resp. right)- \(k \)-ideal of \(R \), then \((A : B)_l\) (resp. \((A : B)_r\)) is a \(k \)-ideal of \(R \).

Lemma 2.2. Let \(R \) be a semiring with involution and let \(P \) be a \(* \)-ideal of \(R \). Then \(P \) is a \(* \)-prime ideal of \(R \) if and only if whenever \(AB \subseteq P \), we have \(A \subseteq P \) or \(B \subseteq P \) with either \(A \) or \(B \) is a \(* \)-ideal.

Proof. Let \(P \) be a \(* \)-prime ideal of \(R \). Without loss of generality, let us assume that \(A \) is an ideal of \(R \) and \(B \) is a \(* \)-ideal of \(R \) such that \(AB \subseteq P \). Then \(BA^* \subseteq P \) and \((A^*B)^2 = A^*BA^*B \subseteq P \) which imply \(AB \subseteq P \). Thus \((A + A^*)B \subseteq P \). By assumption, we have \((A + A^*) \subseteq P \) or \(B \subseteq P \). Hence \(A \subseteq P \) or \(B \subseteq P \). The converse is obvious.

Theorem 2.3. Let \(R \) be a semiring with involution and \(P \) be a \(* \)-ideal of \(R \). Then the following conditions are equivalent:

(i) \(P \) is a \(* \)-prime ideal.

(ii) If \(a, b \in R \) such that \(aRb \subseteq P \); \(a^*Rb \subseteq P \), then \(a \in P \) or \(b \in P \).

(iii) If \(< a > \) and \(< b > \) are principal ideals of \(R \) such that \(< a > < b > \subseteq P \); \(< a^* > < b > \subseteq P \), then \(a \in P \) or \(b \in P \).

(iv) If \(U \) and \(V \) are right ideals in \(R \) such that \(UV \subseteq P \); \(U^*V \subseteq P \), then \(U \subseteq P \) or \(V \subseteq P \).

(v) If \(U \) and \(V \) are left ideals in \(R \) such that \(UV \subseteq P \); \(U^*V \subseteq P \), then \(U \subseteq P \) or \(V \subseteq P \).

Proof. \((i) \Rightarrow (ii)\) Suppose \(aRb \subseteq P \) and \(a^*Rb \subseteq P \). By Lemma 2.1, we have \(< a > < b > \subseteq P \) and \(< a^* > < b > \subseteq P \). Then \(R(< a > + < a^* >)RR < b > R \subseteq P \). Then \(R(< a > + < a^* >)RR < b > R \subseteq P \). By Lemma 2.2, we have \(R(< a > + < a^* >) \subseteq P \) or \(R < b > R \subseteq P \).

If \(R(< a > + < a^* >)R \subseteq P \), then \(< a > + < a^* >)^3 \subseteq P \). Hence \(a \in P \).
Otherwise $R < b > R \subseteq P$. Then $< b >^3 \subseteq P$ implies $b \in < b > \subseteq P$.

(iii) \Rightarrow (iii) It is obvious.

(v) Let U and V be left ideals of R such that $UV \subseteq P$ and $U \ast V \subseteq P$. Suppose $U \not\subseteq P$. Then there exists $u \in U$ such that $u \notin P$. Let $v \in V$. Then $< u > < v > \subseteq UV + RUV \subseteq P$ and $< u > < v > \subseteq U \ast V + RU \ast V \subseteq P$. By assumption, we have $< u > \subseteq P$ or $< v > \subseteq P$, but $u \notin P$. Hence $V \subseteq P$.

\[\square\]

A non-empty set M of elements of a semiring R is said to be m-system if $a, b \in M$, there exists $x \in R$ such that $axb \in M$. A non-empty set M of elements of a semiring R is said to \ast-m-system if $a, b \in M$, there exists $x \in R$ such that $axb \in M$ or $a \ast xb \in M$. Obviously every m-system is a \ast-m-system. Also P is a \ast-prime ideal if and only if its complement is a \ast-m-system.

The following example shows that there exists a \ast-m-system of R that is not an m-system of R.

Example 2.4. Let R be a semiring of non-negative integers where $a + b = \max\{a, b\}$ and $ab = \min\{a, b\}$. Let Z_6 be the ring of integer of modulo 6. Then $S = Z_6 \oplus Z_6 \oplus R \oplus R$ is a semiring. Define \ast-on R via $(a_1, a_2, b_1, b_2)\ast = (a_2, a_1, b_2, b_1)$.

Let $M = \{(i, j, m, n) / i \neq j; i, j \neq 0; m, n < 3\}$. Clearly M is a \ast-m-system but not a m-system because $(2, 3, 1, 2)x(3, 2, 1, 2) \notin M$ for all $x \in S$.

Theorem 2.5. Let M be a non-void \ast-m-system in R and I be a \ast-ideal of R with $I \cap M = \phi$. Then I is contained in a \ast-prime ideal $P \neq R$ with $P \cap M = \phi$.

Proof. Let $A = \{J / J$ is a \ast-ideal of R with $I \subseteq J$ and $J \cap M = \phi\}$. Clearly $A \neq \phi$. By Zorn’s lemma, A contains a maximal element (say) P with $P \subseteq I$ and $P \cap M = \phi$. Let A, B be \ast-ideals of R such that $AB \subseteq P$. Suppose $A \not\subseteq P$ and $B \not\subseteq P$. Then there exists $a \in A$ and $b \in B$ such that $a, b \notin P$. Now $P \subset P + (a > + < a >^\ast)$ and $P \subset P + (b > + < b >^\ast)$ which gives $(P + (a > + < a >^\ast)) \cap M \neq \phi$ and $(P + (b > + < b >^\ast)) \cap M \neq \phi$. Then there exists $x \in (P + (a > + < a >^\ast)) \cap M$ and $y \in (P + (b > + < b >^\ast)) \cap M$ such that $xty \in M$ or $x^t y \in M$ for some $t \in R$. Clearly $xty \in (P + (a > + < a >^\ast))(P + (b > + < b >^\ast))$ and $x^t y \in (P + (a > + < a >^\ast))(P + (b > + < b >^\ast))$. Now $(P + (a > + < a >^\ast))(P + (b > + < b >^\ast)) \subseteq P + (a > + < a >^\ast < b > + < a >^\ast < b >^\ast) \subseteq P + AB \subseteq P$. Then
$P \cap M \neq \phi$, a contradiction. Hence P is a $*$-prime ideal of R contains I. \hfill \Box

3. $*$-k-Prime Ideal

In this section, we continue our investigation of interrelations between various types of ideals in semiring with involution. Also, we introduce the notions of $*$-k-prime and $*$-m_k-system.

From [7], if I is any additive subsemigroup of R, then $\overline{I} = \{ a \in R \mid a + x \in I \text{ for some } x \in I \}$ is called k-closure of I. Observe that $I \subseteq \overline{I}, \overline{I} = \overline{I}$ and $\overline{I} = \overline{I}$. It is easy to verify that if I is an ideal of R, then I is k-ideal if and only if $I = \overline{I}$. If I is an ideal of R, then \overline{I} is an ideal of R. Observe that $\langle a \rangle$ is a principal k-ideal generated by a. Following [5], an ideal P is said to be $*$-k-prime if whenever A, B are k-ideals of R such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. A $*$-ideal P of R is said to be $*$-k-prime if whenever A, B are $*$-ideals of R such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. From [5], a non-empty set M of elements of a semiring R is said to be m_k-system if $a, b \in M$, there exists $x \in \langle a \rangle$ and $y \in \langle b \rangle$ such that $xy \in M$. A non-empty set M of elements of a semiring R is said to be $*-m_k$-system if $a, b \in M$, there exists $x \in \langle a \rangle + \langle a^* \rangle$ and $y \in \langle b \rangle + \langle b^* \rangle$ such that $xy \in M$ or $x^*y \in M$. Observe that every m_k-system is a $*-m_k$-system. In Example 2.4 M is a $*-m_k$-system not an m_k-system. It is easy to see that if P is a $*$-ideal in R, then P is $*$-k-prime if and only if R/P is $*$-m_k-system. Also if P is an ideal of R, then P is k-prime if and only if R/P is an m_k-system. Let I be a additive subsemigroup of R and let $L(I) = \{ x \in I \mid Rx \subseteq I \}$ and $H(I) = \{ y \in L(I) \mid yR \subseteq L(I) \}$. Clearly $L(I)$ is a left ideal of R.

Lemma 3.1. Let R be a semiring. If I is any additive subsemigroup of R, then $H(I)$ is the (unique) largest ideal of R contained in I.

Proof. Clearly $H(I) \subseteq I$. From [10, Proposition 4], we have $H(I)$ is the largest ideal of R contained in I. \hfill \Box

It is well-known [7] that if I is an ideal of R, then \overline{I} is the smallest k-ideal containing I.

Lemma 3.2. Let R be a semiring. If I is a additive subsemigroup of R with $I = \overline{I}$, then I is an k-ideal of R or $H(I)$ is a k-ideal of R and it is the largest k-ideal contained in I.

Proof. By Lemma 3.1, we have $H(I)$ is the largest ideal of R contained in I. Clearly $H(I) \subseteq H(I)$ and $H(I)$ is an ideal of R. Let $x \in H(I)$. Then $x + h \in H(I)$ for some $h \in H(I)$. Since $H(I) \subseteq I$, we have $x + h \in I$ for some $h \in I$. Since $I = \overline{I}$, we have $x \in I$. Thus $H(I) \subseteq I$. By Lemma 3.1, we have $H(I) = I$ or $H(I) = \overline{H(I)}$. Hence I is a k-ideal of R or $H(I)$ is a k-ideal of R.

Theorem 3.3. Let R be a semiring and let P be a k-ideal of R. Then P is a prime ideal if and only if P is a k-prime ideal.

Proof. If P is a prime then P is k-prime. Let A and B be ideals of R such that $AB \subseteq P$. From Lemma 2.1, we have $\overline{A} \overline{B} \subseteq P$. Then by assumption, we have $A \subseteq P$ or $B \subseteq P$. Hence P is a prime ideal. □

Theorem 3.4. Let R be a semiring with involution and P be a $*-k$-ideal of R. Then P is $*-prime$ if and only if P is $*-k$-prime.

Theorem 3.5. Let R be a semiring with involution and let P be a $*-k$-ideal of R. Then P is semiprime if and only if P is $*-k$-semiprime.

Proof. If P is a semiprime ideal, then clearly P is $*-k$-semiprime.

Conversely, let P be a $*-k$-semiprime ideal, and let J be any ideal of R with $J^2 \subseteq P$. Also $(J^*)^2 \subseteq P$. Then $(J + J^*)^4 \subseteq P$. Since $(P : (J + J^*)^2)_l$ and $(P : (J + J^*)^2)_r$ are k-ideals of R, we have $(J + J^*)^2 \subseteq P$. By assumption, we have $(J + J^*)^2 \subseteq P$. Then $(J + J^*)^2 \subseteq P$. Again by using $(P : (J + J^*))_l$ and $(P : (J + J^*))_r$, we have $(J + J^*)^2 \subseteq P$. Then $J + J^* \subseteq P$. Thus $J \subseteq P$. Hence P is a semiprime ideal. □

Lemma 3.6. Let R be a semiring with involution. If P is a k-prime and $*-ideal$ of R, then P is $*-k$-prime.

The converse of Lemma 3.6 is not true, in general as the following example shows.

Example 3.7. Consider the ring $A = Z_4$ of modulo 4 and semiring $B = B(4, 2)$ (F.E. Alarcon and D. Polkoska [5]).
Here \(R = A \oplus A \oplus B \oplus B \) is a semiring. Define \(*\)-on \(R \) via \((a_1, a_2, b_1, b_2)^* = (a_2, a_1, b_2, b_1)\). Let \(A_1 = \{0, 2\} \), \(P = (A, A, A_1) \), \(I = (A, A, B, 0) \) and \(J = (A, A, 0, B) \). Then \(P \) is a \(*\)-\(k \)-prime ideal of \(R \) but not a \(k \)-prime ideal because of \(IJ \subseteq P \) but neither \(I \subseteq P \) nor \(J \subseteq P \).

Theorem 3.8. Let \(R \) be a semiring with involution and let \(P \) be a \(*\)-\(k \)-ideal of \(R \). Then \(P \) is a \(*\)-\(k \)-prime ideal if and only if whenever \(AB \subseteq P \), we have \(A \subseteq P \) or \(B \subseteq P \) with either \(A \) or \(B \) is a \(*\)-\(k \)-ideal of \(R \).

Proof. Let \(P \) be a \(*\)-\(k \)-prime ideal of \(R \). Without loss of generality, let us assume that \(A \) is a \(*\)-\(k \)-ideal of \(R \) and \(B \) is an ideal of \(R \) and \(AB \subseteq P \). Then \(B^*A \subseteq P \). Thus \((AB^*)^2 \subseteq P \). By Theorem 3.5, we have \(AB^* \subseteq P \). Then \(A(B + B^*) \subseteq P \). Since \((P : A)_r \) is a \(k \)-ideal of \(R \), we have \(A(B + B^*) \subseteq P \). By assumption, we have \(A \subseteq P \) or \((B + B^*) \subseteq P \). Hence \(A \subseteq P \) or \(B \subseteq P \). Converse is clear. \(\square \)

Theorem 3.9. Let \(Q \) be a \(*\)-ideal of a semiring \(R \) with involution and let \(M \) be a \(*\)-\(m_k \)-system of \(R \) such that \(Q \cap M = \phi \). Then there exists a \(*\)-prime ideal \(P \neq R \) such that \(Q \subseteq P \) with \(P \cap M = \phi \).

Proof. Let \(A = \{ J / J \text{ is } *-\text{ideal of } R \text{ such that } Q \subseteq J \text{ and } J \cap M = \phi \} \). Clearly \(A \neq \phi \). By Zorn’s Lemma, \(A \) contains a maximal element (say) \(P \) with \(Q \subseteq P \) and \(P \cap M = \phi \). Let \(A \) and \(B \) be \(*\)-ideals of \(R \) such that \(AB \subseteq P \). Suppose \(A \not\subseteq P \) and \(B \not\subseteq P \). Then there exists \(a \in A \) and \(b \in B \) with \(a, b \not\in P \). Thus \(P \subseteq P+ \langle a \rangle \cup \langle a^* \rangle \) and \(P \subseteq P+ \langle b \rangle \cup \langle b^* \rangle \). By maximality of \(P \), we have \(P+ \langle a \rangle \cup \langle a^* \rangle \cap M \neq \phi \) and \(P+ \langle b \rangle \cup \langle b^* \rangle \cap M \neq \phi \). Then there exists \(x \in \overline{P+ \langle a \rangle} \cup \langle a^* \rangle \) and \(y \in \overline{P+ \langle b \rangle} \cup \langle b^* \rangle \) such that \(x_1y_1 \in M \) or \(x_1y_1 \in M \) for some \(x_1 \in \langle x \rangle \cup \langle x^* \rangle \) and \(y_1 \in \langle y \rangle \cup \langle y^* \rangle \). Since \(x \in \overline{P+ \langle a \rangle} \cup \langle a^* \rangle \) and \(y \in \overline{P+ \langle b \rangle} \cup \langle b^* \rangle \), we have

\[
x_1y_1 \in (\overline{P+ \langle a \rangle} \cup \langle a^* \rangle)(\overline{P+ \langle b \rangle} \cup \langle b^* \rangle)
\]

and

\[
x_1^*y_1 \in (\overline{P+ \langle a \rangle} \cup \langle a^* \rangle)(\overline{P+ \langle b \rangle} \cup \langle b^* \rangle).
\]
Let \(s \in (P+<a>+<a^*>)(P++<b^*>). \) Then \(s = \sum_{i=1}^{n} t_i t'_i \) for some \(t_i \in P+<a>+<a^*> \) and \(t'_i \in P++<b^*> \). Thus \(t_i + x_i \in (P+<a>+<a^*>) \) and \(t'_i + x'_i \in (P++<b^*>) \) for \(x_i \in (P+<a>+<a^*>) \) and \(x_i \in (P++<b^*>) \) for each \(i \). Clearly \((P+<a>+<a^*>)(P++<b^*>) \subseteq P \) and \(x_i x'_i \in P \subseteq \overline{P} \). Now Consider \(x_i t_i + x_i x'_i = x_i (t'_i + x'_i) \in (P+<a>+<a^*>)(P++<b^*>) \subseteq P \). Then \(x_i t_i \in \overline{P} \) since \(x_i x'_i \in P \). Similarly, we can get \(t_i t'_i \in \overline{P} \).

Since \(\overline{P} \) is an ideal of \(R \), we have \(t_i x_i + x_i t'_i + x_i x'_i \in \overline{P} \). Now \(t_i t'_i + x_i t'_i + t_i x'_i + x_i x'_i = (t_i + x_i)(t'_i + x'_i) \in (P+<a>+<a^*>)(P++<b^*>) \subseteq P \). Thus \(s \in \overline{P} \). Hence \((P+<a>+<a^*>)(P++<b^*>) \subseteq \overline{P} \). So \(x_1 y_1 \) and \(x'_1 y'_1 \in \overline{P} \), a contradicts to \(\overline{P} \cap M = \phi \). Hence \(P \) is a \(\ast \)-prime ideal of \(R \) contains \(Q \).

\[\square \]

Theorem 3.10. Let \(Q \) be a \(\ast \)-ideal of semiring with involution of \(R \), and let \(M \) be a \(\ast \)-\(m_k \)-system of \(R \) such that \(\overline{Q} \cap M = \phi \). Then there exists a \(\ast \)-\(k \)-prime ideal \(P \neq R \) such that \(Q \subseteq P \) with \(\overline{P} \cap M = \phi \).

References

