ON HYPER ZAGREB INDEX OF CERTAIN
GENERALIZED GRAPH STRUCTURES

Zhen Wang¹, Natarajan Chidambaram² §
Selvaraj Balachandran³

¹School of Computer Engineering
Anhui Wenda University of Information Engineering
Hefei - 230032, CHINA

² Department of Mathematics
Srinivasa Ramanujan Centre
SASTRA Deemed University
Kumbakonam - 612 001, INDIA

³Department of Mathematics, School of Arts
Sciences and Humanities, SASTRA Deemed to be University
Thanjavur - 613 401, Tamilnud, INDIA

Abstract: Let $G = (V, E)$ be a graph with n vertices and m edges. The hyper Zagreb index of G, denoted by $HM(G)$, is defined as

$$HM(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]^2,$$

where $d_G(v)$ denotes the degree of a vertex v in G. In this paper we compute the hyper Zagreb index of certain generalized graph structures such as generalized thorn graphs and generalized theta graphs. Also, for the first time, we determine exact values for hyper Zagreb index of some cycle related graphs, namely cycle with parallel P_k chords, cycle with parallel C_k chords and shell type graphs.

AMS Subject Classification: 05C07, 05C35, 05C40

Key Words: Zagreb index; hyper Zagreb index; thorn graphs; generalized thorn graphs; generalized theta-graphs

Received: June 17, 2019 © 2019 Academic Publications

§Correspondence author
1. Introduction

Mathematical calculations are absolutely necessary to explore important concepts in chemistry. In mathematical chemistry, molecules are often modeled by graphs named “molecular graphs. A molecular graph is a simple graph in which vertices are the atoms and edges are bonds between them. By IUPAC terminology, a topological index is a numerical value for correlation of chemical structure with various physical properties, chemical reactivity or biological activity.

In chemical graph theory, a graphical invariant is a number related to a graph which is structurally invariant. These invariant numbers are also known as the topological indices. The well-known Zagreb indices are one of the oldest graph invariants firstly introduced by Gutman and Trinajstić [13] more than forty years ago, where Gutman and Trinajstić examined the dependence of total π-electron energy on molecular structures, and this was elaborated on in [12].

Throughout this paper we consider only simple and connected graphs. For a graph $G = (V, E)$ with vertex set $V = V(G)$ and edge set $E = E(G)$, the order (number of vertices) and size (number of edges) of G are denoted by n and m respectively. The degree of a vertex v in G is the number of edges incident to v and denoted by $d_G(v)$.

For a (molecular) graph G, the first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ are, respectively, defined as follows:

$$M_1 = M_1(G) = \sum_{v \in V(G)} d_G^2(v), \quad M_2 = M_2(G) = \sum_{uv \in E(G)} d_G(u)d_G(v).$$

Also, $M_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]$. For more details on these indices see the recent papers [3, 4, 6, 7, 8, 11, 14, 18, 19, 29, 30, 31] and the references therein.

Miličević et al. [20] in 2004 defined reformulated the Zagreb indices in terms of edge degrees instead of vertex degrees as:

$$EM_1(G) = \sum_{e \in E(G)} (d(e))^2$$

and

$$EM_2(G) = \sum_{e \sim f} d(e)d(f),$$
where \(d(e) \) represents the degree of the edge \(e \) in \(G \), which is defined by \(d(e) = d(u) + d(v) - 2 \) with \(e = uv \) and \(e \sim f \) represents that the edges \(e \) and \(f \) are adjacent.

Shirdel et al. in [24] defined hyper Zagreb index, as:

\[
HM(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v))^2
\]

and discussed some graph operations of the hyper Zagreb index in [24].

Gao et al. [9] presented exact expressions for the hyper-Zagreb index of graph operations containing cartesian product and join of \(n \) graphs, splice, link and chain of graphs. Veylaki et al. [27] calculated third and hyper Zagreb coindices of graph operations containing the Cartesian product and composition. Suresh Elumalai et al. [25] obtained some bounds on the hyper Zagreb index. An excellent survey of several variants of Zagreb indices has been done by Gutman et al. in [10].

1.1. Hyper Zagreb index of generalized thorn graphs

The \(t \)-thorn graph of a graph \(G \), denoted by \(G^t \), is a graph obtained by joining \(t \) copies of pendent edges known as thorns to each vertex of \(G \).

In this section, we compute the Hyper Zagreb index of the following four types of generalized thorn graphs.

Let \(G \) be a graph of order \(n \) and size \(m \) respectively. Let \(V(G) = \{v_1, v_2, \ldots, v_n\} \).

Generalized thorn graph of Type-I

Attach \(t_i \) copies of a path of order \(r \geq 2 \) at each vertex \(v_i \) of \(G \) by identifying the vertex \(v_i \) as the initial vertex of such paths. The resulting graph thus obtained is denoted by \(G_P \).

Generalized thorn graph of Type-II
Attach \(t_i \) copies of a cycle of length \(r \) to each vertex \(v_i \) of \(G \) by identifying \(v_i \) as a vertex in each cycle. The resulting graph thus obtained is denoted by \(G_C \).

Generalized thorn graph of Type-III

Attach \(t_i \) copies of a complete graph \(K_r \) of order \(r \geq 3 \) to each vertex \(v_i \) of \(G \) by identifying \(v_i \) as a vertex in \(K_r \). The graph thus obtained is denoted by \(G_K \).

Generalized thorn graph of Type-IV

Attach \(t_i \) copies of a complete bipartite graph \(K_{r,s} \) to each vertex \(v_i \) of \(G \) by identifying \(v_i \) as a vertex in a partition of \(K_{r,s} \) containing \(r \) vertices. The resulting graph thus obtained is denoted by \(G_A \).

Generalized thorn graph of Type-V

Generalized thorn graph of Type-VI

To every vertex \(v_i \) of \(G \), join \(t_i \) copies of \(K_p \) each by an edge. The graph thus obtained is denoted by \(G'_K \).

Generalized thorn graph of Type-VII

To every vertex \(v_i \) of \(G \), join \(t_i \) copies of a complete bipartite graph \(K_{r,s} \) each by an edge.

Theorem 1. \(HM(G_P) = HM(G) + 2 \sum_{v_iv_j \in E(G)} [d(v_i) + d(v_j)] \times (t_i + t_j) + \sum_{v_iv_j \in E(G)} (t_i + t_j)^2 + (16r - 35) + \sum_{i=1}^{n} t_i + \sum_{i=1}^{n} [t_id(v_i)^2 + t_i^3 + 4t_i^2d(v_i) + 4t_i d(v_i)] \).

Proof. In the generalized thorn graph \(G_P \) of \(G \), \(d_{G_P}(v_i) = d(v_i) + t_i \), for any vertex \(v_i \in V(G) \). Therefore,

\[
HM(G_P) = \sum_{v_iv_j \in E(G_P)} [d(v_i) + d(v_j)]^2 \\
= \sum_{v_iv_j \in E(G_P)} [d(v_i) + t_i + d(v_j) + t_j]^2 \\
+ \sum_{i=1}^{n} t_i [d(v_i) + t_i + 2]^2 + 16(r - 3) \sum_{i=1}^{n} t_i + 9 \sum_{i=1}^{n} t_i \\
= HM(G) + 2 \sum_{v_iv_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)
\]
\[
+ \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i \left[(d(v_i))^2 + (t_i + 2)^2 + 2d(v_i)(t_i + 2) \right] \\
+(16r - 35) \sum_{i=1}^{n} t_i \\
= HM(G) + 2 \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] \left(t_i + t_j \right) \\
+ \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i d(v_i)^2 + t_i^3 + 4t_i^2 + 2t_i^2 d(v_i) + 4t_i d(v_i) \\
+(16r - 35) \sum_{i=1}^{n} t_i.
\]

\[\square\]

Corollary 2. If \(t_i = t\), for all \(1 \leq i \leq n\), then \(HM(G_P) = HM(G) + 5tM_1(G) + 8mt^2 + nt^3 + 4nt^2 + 16mt + 16nt - 35nt\).

Example 3. (i) If \(G \cong P_n\) and \(t_i = t\) for all \(1 \leq i \leq n\), then \(HM(G_P) = 16n + 16nt + 16nt^2\) and \(HM(T) = 16n + 15nt - 46t - 30\). In particular, if \(r = 2\), we get the thorn tree \(T\) (refer Figure 1) and \(HM(T) = 16n + (12n - 8)t^2 + 33nt - 46t - 30\).

(ii) If \(G \cong C_n\) and \(t_i = t\) for all \(1 \leq i \leq n\), then \(HM(G_P) = 16n(rt + 1) + nt + 12nt^2 + nt^3\).

Theorem 4. \(HM(G_C) = HM(G) + 4 \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] \times (t_i + t_j) + 4 \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + 2 \sum_{i=1}^{n} t_i d(v_i)^2 \\
+ 8 \sum_{i=1}^{n} [d(v_i)t_i^2 + d(v_i)t_i^3 + 2t_i^3] + (16r - 24) \sum_{i=1}^{n} t_i\).

Proof.

\(HM(G_C) = \sum_{v_i v_j \in E(G_C)} [d(v_i) + d(v_j)]^2\)
$$t = \sum_{v_i, v_j \in E(G)} [d(v_i)2t_i + d(v_j) + 2t_j]^2$$

$$= HM(G) + 4 \sum_{v_i, v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)$$

$$+ 4 \sum_{i=1}^{n} (t_i + t_j)^2 + 2 \sum_{i=1}^{n} t_id(v_i)^2 + 4d(v_i)(t_i + 1) + 4t_i^2$$

$$+ 8t_i + 4) + (16 - 32) \sum_{i=1}^{n} t_i$$

$$= HM(G) + 4 \sum_{v_i, v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)$$

$$+ 4 \sum_{v_i, v_j \in E(G)} (t_i + t_j)^2 + 2 \sum_{i=1}^{n} t_id(v_i)^2$$

$$+ 8 \sum_{i=1}^{n} [d(v_i)t_i^2 + d(v_i)t_i + t_i^3 + 2t_i^2] + (16 - 24) \sum_{i=1}^{n} t_i$$

\[\square \]

Corollary 5. If \(t_i = t \), for all \(1 \leq i \leq n \), then \(HM(G_C) = HM(G) + 10tM_1(G) + 32mt^2 + 16mt + 8nt^3 + 16nt^2 + (16 - 24)nt \).

Example 6. (i) If \(G \cong P_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G_C) = 8nt^3 + 48nt^2 + 32nt + 16n(rt + 1) - 32t^2 - 76t - 30 \).

(ii) If \(G \cong C_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G_C) = 8nt^3 + 48nt^2 + 32nt + 16n(rt + 1) \).
Theorem 7. \[HM(G_K) = HM(G) + 2(r-1) \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] \]
\[
\times (t_i + t_j) + (r-1)^2 \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2 + (r-1) \sum_{i=1}^{n} t_i d(v_i)^2 + 2(r-1)^2 \sum_{i=1}^{n} d(v_i)t_i(t_i + 1) + (r-1)^3 \sum_{i=1}^{n} [t_i^3 + 2t_i^2 + (2r-1)t_i] .
\]

Proof.
\[HM(G_K) = \sum_{v_i,v_j \in E(G_K)} [d(v_i) + d(v_j)]^2 \]
\[= \sum_{v_i,v_j \in E(G)} [d(v_i) + t_i(r-1) + d(v_j) + t_j(r-1)]^2 \]
\[+ (r-1) \sum_{i=1}^{n} t_i [d(v_i) + t_i(r-1) + (r-1)]^2 \]
\[+ \frac{(r-1)(r-2)}{2} \sum_{i=1}^{n} t_i(2r-2)^2 \]
\[= HM(G) + 2(r-1) \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] [t_i + t_j] \]
\[+ (r-1)^2 \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2 \]
\[+ (r-1) \sum_{i=1}^{n} t_i [d(v_i)^2 + 2(r-1)d(v_i)(t_i + 1) + (r-1)^2(t_i + 1)^2] \]
\[+ 2(r-1)^3(r-2) \sum_{i=1}^{n} t_i \]
\[= HM(G) + 2(r-1) \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] [t_i + t_j] \]
\[+ (r-1)^2 \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2 + (r-1) \sum_{i=1}^{n} t_i d(v_i)^2 \]
\[+ 2(r-1)^2 \sum_{i=1}^{n} d(v_i)t_i(t_i + 1) + (r-1)^3 \sum_{i=1}^{n} [t_i(t_i + 1)^2 + 2(r-2)t_i] \]
\[HM(G) + 2(r - 1) \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] [t_i + t_j] + (r - 1)^2 \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + (r - 1) \sum_{i=1}^{n} t_i d(v_i)^2 \]

\[+ 2(r - 1)^2 \sum_{i=1}^{n} d(v_i) t_i (t_i + 1) + (r - 1)^3 \sum_{i=1}^{n} [t_i^3 + 2t_i^2 + 2(r - 1)t_i] \]

\[\text{Corollary 8. If } t_i = t, \text{ for all } 1 \leq i \leq n, \text{ then } HM(G_K) = HM(G) + 5t(r - 1)M_1(G) + 4mt(t + 1)(r - 1)^2 + n(r - 1)^3(t^3 + 2t^2 + 2(r - 1)t) \]

\[\text{Example 9. (i) If } G \cong P_n \text{ and } t_i = t \text{ for all } 1 \leq i \leq n, \text{ then } HM(G_K) = 16n - 30 + (20n - 30)t(r - 1) + (r - 1)^2(n(r - 1)t^3 + (2n - 4)t^2 + (6n - 4)t + 2nt(r + t - 2)). \]

\[\text{(ii) If } G \cong C_n \text{ and } t_i = t \text{ for all } 1 \leq i \leq n, \text{ then } HM(G) = 16n + 20nt(r - 1) + 4nt(t + 1)(r - 1)^2 + n(r - 1)^3(t^3 + 2t^2 + 2(r - 1)t) \]

\[\text{Theorem 10. } HM(G_A) = HM(G) + 2s \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] \]

\[\times (t_i + t_j) + \sum_{i=1}^{n} st_i [d(v_i) + r + s^2 + r^2 + st_i + 2rs]. \]

\[\text{Proof.} \]

\[HM(G_A) = \sum_{v_i v_j \in E(G_A)} [d(v_i) + d(v_j)]^2 \]

\[= \sum_{v_i v_j \in E(G)} [d(v_i) + t_i s + d(v_j) + t_j s]^2 \]

\[+ \sum_{i=1}^{n} st_i [d(v_i) + t_i s + r] + \sum_{i=1}^{n} t_i s(s + r)^2 \]

\[= HM(G) + 2s \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) \]
\[\sum_{i=1}^{n} st_i [d(v_i) + r + s^2 + r^2 + st_i + 2rs] \]

\[HM(G_A) = HM(G) + 4tsM_1(G) + 2mst + st(r + s^2 + r^2)n + s^2t^2n + 2rs^2tn. \]

Further, if \(r = s \), then \(HM(G_A) = HM(G) + 4tsM_1(G) + 2mst + ns^2t + ns^2t^2 + 2tns^3. \)

Corollary 11. If \(t_i = t \), for all \(1 \leq i \leq n \), then \(HM(G_A) = HM(G) + 4tsM_1(G) + 2mst + st(r + s^2 + r^2)n + 2rs^2tn. \)

Example 12. (i) If \(G \cong P_n \), \(t_i = t \) for all \(1 \leq i \leq n \) and \(r = s \), then \(HM(G_A) = 16n - 30 + 18nst - 26st + ns^2 + ns^2t^2 + 2tns^3. \)

(ii) If \(G \cong C_n \), \(t_i = t \) for all \(1 \leq i \leq n \) and \(r = s \), then \(HM(G_A) = 16n + 18nst + ns^2t + ns^2t^2 + 2tns^3. \)

Theorem 13. \(HM(G'_C) = HM(G) + 2 \sum_{v_i, v_j \in E(G)} [d(v_i) + d(v_j)] \times (t_i + t_j) + \sum_{v_i, v_j \in E(G)} (t_i + t_j)^2 + M_1(G) + 2 \sum_{i=1}^{n} d(v_i)t_i \]

\[+ \sum_{i=1}^{n} [t_i^2 + (16r - 24)t_i] + 9n + 12m. \]

Proof.

\[HM(G'_C) = \sum_{v_i, v_j \in E(G')} [d_G'(v_i) + d_G'(v_j)]^2 \]

\[= \sum_{v_i, v_j \in E(G)} [d(v_i) + t_i + d(V_j) + t_j]^2 + \sum_{i=1}^{n} [d(v_i) + t_i + 3]^2 \]

\[+ 50 \sum_{i=1}^{n} t_i + 16(r - 2) \sum_{i=1}^{n} t_i \]

\[= HM(G) + 2 \sum_{v_i, v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) \]

\[+ \sum_{v_i, v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} d(v_i)^2 \]
\[+2 \sum_{i=1}^{n} d(v_i)(t_i + 3) + \sum_{i=1}^{n} (t_i + 3)^2 + 50 \sum_{i=1}^{n} t_i + 16(r-2) \sum_{i=1}^{n} t_i\]
\[= HM(G) + 2 \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) + \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2 + M_1(G)\]
\[+2 \sum_{i=1}^{n} d(v_i)t_i + \sum_{i=1}^{n} [t_i^2 + (16r - 24)t_i] + 9n + 12m\]

Corollary 14. If \(t_i = t \), for all \(1 \leq i \leq n \), then
\[HM(G'_C) = HM(G) + (4t+1)M_1(G) + 4mt(t+1) + nt^2 + nt(16r-24) + 12m + 9n.\]

Example 15. (i) If \(G \cong P_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G'_C) = (5n - 4)t^2 + 4nt(4r - 1) + 12(n - t) - 44,\)

(ii) If \(G \cong C_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G'_C) = 29n + nt(t - 4) + 16n(rt + 1).\)

Theorem 16. \(HM(G'_K) = HM(G) + 2 \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] \times (t_i + t_j) + \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_id(v_i)\]
\[+ \sum_{i=1}^{n} t_i^2 + (2r^4 - 6r^3 - 10r^2 + 15r) \sum_{i=1}^{n} t_i.\]

Proof.
\[HM(G'_K) = \sum_{v_i,v_j \in E(G'_K)} [d_{G'_K}(v_i) + d_{G'_K}(v_j)]^2\]
\[= \sum_{v_i,v_j \in E(G)} [d(v_i) + t_i + d(v_j) + t_j]^2 + \sum_{i=1}^{n} t_i [d(v_i) + t_i + r]\]
\[+ 2 \sum_{i=1}^{n} t_i(2r - 1)^2 + \left[\frac{r(r-1)}{2} - 2 \right] \sum_{i=1}^{n} t_i(2r - 2)^2\]
\[= HM(G) + 2 \sum_{v_i,v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) + \sum_{v_i,v_j \in E(G)} (t_i + t_j)^2\]
\[+ \sum_{i=1}^{n} t_i d(v_i) + \sum_{i=1}^{n} t_i^2 + r \sum_{i=1}^{n} t_i + 2r(r-1)^3 \sum_{i=1}^{n} t_i - 8(r-1)^2 \sum_{i=1}^{n} t_i = HM(G) + 2 \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) + \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i d(v_i) + \sum_{i=1}^{n} t_i^2 + [2r(r-1)^3 - 8(r-1)^2 + r] \sum_{i=1}^{n} t_i. \]

Therefore,

\[HM(G'_K) = HM(G) + 2 \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j) + \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i d(v_i) + \sum_{i=1}^{n} t_i^2 + (2r^4 - 6r^3 - 10r^2 + 15r) \sum_{i=1}^{n} t_i. \]

Corollary 17. If \(t_i = t \), for all \(1 \leq i \leq n \), then \(HM(G'_K) = HM(G) + 4tM_1(G) + 4mt^2 + 2mt + nt^2 + (2r^4 - 6r^3 - 10r^2 + 15r)nt. \)

Example 18. (i) If \(G \cong P_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G'_K) = 16n - 30 + (18n - 10)t + (5n - 4)t^2 + (2r^4 - 6r^3 - 10r^2 + 15r)nt, \)

(ii) If \(G \cong C_n \) and \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G'_K) = 16n + (5t + 18)nt + (2r^4 - 6r^3 - 10r^2 + 15r)nt. \)

Theorem 19. \(HM(G'_A) = HM(G) + \sum_{v_i v_j \in E(G)} [d(v_i) + d(v_j)] \times (t_i + t_j) + \sum_{v_i v_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i d(v_i)^2 + 2 \sum_{i=1}^{n} t_i^2 d(v_i) + \sum_{i=1}^{n} t_i^3 + 2s + 1) \sum_{i=1}^{n} d(v_i)t_i + 2 \sum_{i=1}^{n} t_i^2 + (s^2 + 3s + 2s(s + r)(s + r + 1) + 1) \sum_{i=1}^{n} t_i. \)
Proof.

\[HM(G'_A) = \sum_{v_iv_j \in E(G'_A)} \left[d_{G'_A}(v_i) + d_{G'_A}(v_j) \right]^2\]

\[= \sum_{v_iv_j \in E(G)} [d(v_i) + t_i + d(v_j) + t_j]^2\]

\[+ \sum_{i=1}^{n} t_i [d(v_i) + t_i + s + 1]^2\]

\[+ \sum_{i=1}^{n} t_is [s + r + 1]^2 + \sum_{i=1}^{n} t_is(s + r)^2\]

\[= HM(G) + 2 \sum_{v_iv_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)\]

\[+ \sum_{v_iv_j \in E(G)} (t_i + t_j)^2\]

\[+ \sum_{i=1}^{n} t_i [(d(v_i) + 1)^2 + (t_i + s)^2 + 2(d(v_i) + 1)(t_i + s)]\]

\[+ \sum_{i=1}^{n} t_is [(s + r + 1)^2 + (s + r)^2]\]

\[= HM(G) + 2 \sum_{v_iv_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)\]

\[+ \sum_{v_iv_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_i [d(v_i)^2 + 2d(v_i) + 1]\]

\[+ \sum_{i=1}^{n} [t_i(t_i^2 + 2st_i + s^2)] + 2 \sum_{i=1}^{n} [t_i(t_i + s)(d(v_i) + 1)]\]

\[+ \sum_{i=1}^{n} t_is \{ [(s + r)^2 + 2(s + r) + 1] + (s + r)^2 \}\]

\[= HM(G) + 2 \sum_{v_iv_j \in E(G)} [d(v_i) + d(v_j)] (t_i + t_j)\]

\[+ \sum_{v_iv_j \in E(G)} (t_i + t_j)^2 + \sum_{i=1}^{n} t_id(v_i)^2\]
\[+2 \sum_{i=1}^{n} t_i^2 d(v_i) + \sum_{i=1}^{n} t_i^3 + 2(s+1) \sum_{i=1}^{n} d(v_i)t_i \]
\[+2(s+1) \sum_{i=1}^{n} t_i^2 + (s^2 + 3s + 2s(r))(s + r + 1) + 1 \sum_{i=1}^{n} t_i \]

Corollary 20. If \(t_i = t \) for all \(1 \leq i \leq n \), then \(HM(G'_A) = HM(G) + 3tM_1(G) + 8mt^2 + nt^3 + 4mt(s+1) + 2nt^2(s+1) + (s^2 + 3s + 1)nt + 2s(s + r)(s + r + 1)nt. \)

Example 21. (i) If \(G \cong P_n \), \(t_i = t \) for all \(1 \leq i \leq n \) and \(r = s \), then \(HM(G'_A) = 16n - 30 + 17nt - 10t + 10nt^2 - 8t^2 + nt^3 + 11nst - 4st + 2nst^2 + 9ns^2t \). Further if \(r = s = t \), then \(HM(G'_A) = 16n - 30 + 35nr + 12nr^3 + (21n - 12)r^2 - 10r \).

(ii) If \(G \cong C_n \), \(t_i = t \) for all \(1 \leq i \leq n \) and \(r = s \), then \(HM(G'_A) = 16n + 17nt + 10mt^2 + 11nst + 9ns^2t + 2nst^2 + nt^3 \). Further if \(r = s = t \), then \(HM(G'_A) = 16n + 17nr + 21nr^2 + 12nr^3 \).

1.2. Hyper Zagreb index of generalized theta graphs

In this section, we compute the hyper Zagreb index of some generalized theta-graphs.

Definition 22. ([5]) The generalized theta-graph \(\Theta(l_1, l_2, \cdots, l_k) \) consists of two vertices \(u \) and \(v \) joined by internally disjoint paths of lengths \(l_1, l_2, \cdots, l_k \).

A particular case of this structure can be found in [23].

Definition 23. A book \(B_k \) is a generalized theta-graph \(\Theta(2, 2, \cdots, 2) \) that consists of \(k \) internally disjoint paths of length 2.

Definition 24. The hanging generalized theta-graph \(G_\Theta = G(\Theta_1, \Theta_2, \cdots, \Theta_r; u_1, u_2, \cdots, u_r) \), where \(\Theta_i = \Theta(l_{i1}, l_{i2}, \cdots, l_{ik_i}) \); \(1 \leq i \leq r \), is a graph obtained by attaching a generalized theta-graph \(\Theta_i \) to a vertex \(u_i \) of the path \(P_r = < u_1, u_2, \cdots, u_r > \) of length \(r - 1 \) after identifying \(u_i \) as a vertex of \(\Theta_i \).
Theorem 25. For a generalized theta-graph $\Theta = \Theta(l_1, l_2, \cdots, l_k)$, $HM(\Theta) = 2k(k + 2)^2 + 16 \sum_{i=1}^{k} (l_i - 2)$.

Proof. Let u and v be two vertices of Θ which are joined internally by k disjoint paths of lengths l_1, l_2, \cdots, l_k respectively. Then $deg_\Theta(u) = deg_\Theta(v) = k$,

$$HM(\Theta) = \sum_{xy \in E(\Theta)} (deg(x) + deg(y))^2$$

$$= 2k(k + 2)^2 + 16 \sum_{i=1}^{k} (l_i - 2).$$

\hfill \lozenge

Corollary 26. If $l_1 = l_2 = \cdots = l_k = n - 1$, then $HM(\Theta) = 2k(k + 2)^2 + 16k(n - 3)$.

Example 27. For a book graph B_k, $HM(B_k) = 2k(k + 2)^2$.

Theorem 28. For a hanging theta-graphs G_Θ,

$$HM(G_\Theta) = 2 \sum_{i=1}^{r} k_i(k_i + 3)^2 + 16 \sum_{i=1}^{r} \sum_{j=1}^{k_i} (l_{ij} - 2)$$

$$+ (k_1 + k_2 + 3)^2 + (k_{r-1} + k_r + 3)^2 + \sum_{i=2}^{r-2} (k_i + k_{i+1} + 4)^2,$$

where $r \geq 2$.

Proof. In G_Θ, $d(u_1) = k_1 + 1$, $d(u_r) = k_r + 1$ and $(u_i) = k_i + 2$, for $2 \leq i \leq r - 1$. So,

$$HM(G_\Theta) = \sum_{xy \in E(G_\Theta)} (d(x) + d(y))^2$$

$$= 2 \sum_{i=1}^{r} k_i(k_i + 3)^2 + 16 \sum_{i=1}^{r} \sum_{j=1}^{k_i} (l_{ij} - 2)$$

$$+ (k_1 + k_2 + 3)^2 + (k_{r-1} + k_r + 3)^2 + \sum_{i=2}^{r-2} (k_i + k_{i+1} + 4)^2.$$

\hfill \lozenge
Corollary 29. If $l_{ij} = n - 1$, for all $1 \leq j \leq k_i$ and $1 \leq i \leq r$, then

$$HM(G_\Theta) = 2 \sum_{i=1}^{r} k_i (k_i + 2)^2 + 16(n - 3) \sum_{i=1}^{r} k_i + (k_1 + k_2 + 3)^2 + (k_r + k_{r-1} + 3)^2 + \sum_{i=2}^{r-2} (k_i + k_{i+1} + 4)^2.$$

Corollary 30. If $l_{ij} = n - 1$, for all $1 \leq j \leq k_i$ and $1 \leq i \leq r$ and $k_1 = k_2 = \cdots = k_r = k$, then

$$HM(G_\Theta) = [2rk + 4r - 16] (k + 2)^2 + 16rk(n - 3) + 2(2k + 3)^2.$$

1.3. Hyper Zagreb index of some cycle related graphs

In this section we compute exact values for hyper Zagreb index of cycle related graphs such as cycle with parallel P_k chords, cycle with parallel C_k chords and shell type graphs. The definitions which we use in this section are taken from [16].

1.3.1. Cycle with parallel P_k chords

Definition 31. A cycle with parallel P_k chords, denoted by, $C(n, P_k)$ ia a graph obtained from a cycle $C_n : \langle v_0, v_1, \cdots, v_{n-1}v_0 \rangle$ of order $n \geq 6$ by adding disjoint paths P_k of order k between the pairs of vertices $(v_1, v_{n-1}), (v_2, v_{n-2}), \cdots, (v_\alpha, v_\beta)$ of C_n where $\alpha = \left\lfloor \frac{n}{2} \right\rfloor - 1$ and $\beta = \left\lceil \frac{n}{2} \right\rceil + 1$, if n is even and $\beta = \left\lceil \frac{n}{2} \right\rceil + 2$, if n is odd.

Theorem 32. $HM[C(n, P_k)] = \begin{cases}
(16k + 2) \left\lfloor \frac{n}{2} \right\rfloor + 36n - 16k - 46, & \text{if } n \text{ is even}, \\
(16k + 2) \left\lceil \frac{n}{2} \right\rceil + 36n - 16k - 66, & \text{if } n \text{ is odd}.
\end{cases}$

Proof. Case 1: n is even.

First, we observe the following edge partition in $C(n, P_k)$

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2,2)$</td>
<td>$\alpha(k - 3)$</td>
</tr>
<tr>
<td>$(2,3)$</td>
<td>$2 \left\lceil \frac{n}{2} \right\rceil + 2$</td>
</tr>
<tr>
<td>$(3,3)$</td>
<td>$n-4$</td>
</tr>
</tbody>
</table>

where $\alpha = \left\lfloor \frac{n}{2} \right\rfloor - 1$.

Now,

\[HM \left[C(n, P_k) \right] = 16\alpha(k - 3) + 50 \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) + 36(n - 4) \]
\[= (16k + 2) \left\lfloor \frac{n}{2} \right\rfloor + 36n - 16k - 46. \]

Case 2: n is odd.
In this case, we have the following edge partition

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2, 2)$</td>
<td>$\alpha(k - 3) + 1$</td>
</tr>
<tr>
<td>$(2, 3)$</td>
<td>$2 \left\lceil \frac{n}{2} \right\rceil + 2$</td>
</tr>
<tr>
<td>$(3, 3)$</td>
<td>$n - 5$</td>
</tr>
</tbody>
</table>

where $\alpha = \left\lfloor \frac{n}{2} \right\rfloor - 1$.
Using the above edge partition and by usual calculations, we get

\[HM [C(n, P_k)] = 16[\alpha(k - 3) + 1] + 25\left[2\left\lfloor \frac{n}{2} \right\rfloor + 2\right] + 36(n - 5) \]

\[= (16k + 2)\left\lfloor \frac{n}{2} \right\rfloor + 36n - 16k - 66. \]

\[\square \]

1.3.2. Cycle with parallel \(C_k \) chords

In this section we determine the exact value for hyper Zagreb index of a cycle with parallel \(C_k \) chord and it is defined as follows.

Definition 33. Let \(C_n : v_1, v_2, \ldots, v_n \) be a cycle of order \(n \) and \(C_k \) be another cycle of length \(k \). Then a cycle with parallel \(C_K \) chords, denoted by \(C(n, C_k) \) is a graph obtained from \(C_n \) by adding a cycle \(C_k \) of length \(k \) between every pair of non-adjacent vertices \((v_2, v_n), (v_3, v_{n-1}), \ldots, (v_a, v_b)\) where \(a = \left\lfloor \frac{n}{2} \right\rfloor \) and \(b = \left\lfloor \frac{n}{2} \right\rfloor + 2 \), if \(n \) is even and \(a = \left\lfloor \frac{n}{2} \right\rfloor \) and \(b = \left\lfloor \frac{n}{2} \right\rfloor + 3 \), if \(n \) is odd.

![Figure 4: Cycle \(C(16, C_4) \) with parallel \(C_4 \) chords](image)

Theorem 34. \(HM [C(n, C_k)] = \begin{cases} (16k + 80)\left\lfloor \frac{n}{2} \right\rfloor - 16k + 64n - 192, & \text{if } n \text{ is even,} \\ (16k + 80)\left\lfloor \frac{n}{2} \right\rfloor - 16k + 64n - 240, & \text{if } n \text{ is odd.} \end{cases} \)
Figure 5: Cycle $C(15, C_4)$ with parallel C_4 chords

Proof. Case 1: n is even.

The following table gives the edge partition of $C(n, C_k)$ when n is even:

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2, 2)$</td>
<td>$(k - 4)(\left\lfloor \frac{n}{2} \right\rfloor - 1)$</td>
</tr>
<tr>
<td>$(2, 4)$</td>
<td>$4 \left\lfloor \frac{n}{2} \right\rfloor$</td>
</tr>
<tr>
<td>$(4, 4)$</td>
<td>$n - 4$</td>
</tr>
</tbody>
</table>

By means of this table, one can easily obtain the required result that

\[
HM [C(n, C_k)] = (k - 4)(\left\lfloor \frac{n}{2} \right\rfloor - 1)(16) + 4 \left\lfloor \frac{n}{2} \right\rfloor (36) + (n - 4)(64)
= (16k + 80) \left\lfloor \frac{n}{2} \right\rfloor - 16k + 64n - 192.
\]

Case 2: n is odd.

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2, 2)$</td>
<td>$(k - 4)\left(\left\lfloor \frac{n}{2} \right\rfloor - 1\right) + 1$</td>
</tr>
<tr>
<td>$(2, 4)$</td>
<td>$4 \left\lfloor \frac{n}{2} \right\rfloor$</td>
</tr>
<tr>
<td>$(4, 4)$</td>
<td>$n - 5$</td>
</tr>
</tbody>
</table>

Now,

\[
HM [C(n, C_k)] = \left[(k - 4) \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \right] (16) + 4 \left\lfloor \frac{n}{2} \right\rfloor (36) + (n - 5)(64)
= (16k + 80) \left\lfloor \frac{n}{2} \right\rfloor - 16k + 64n - 240.
\]

\[
\square
\]
1.3.3. Shell type graph $Sh(n, k)$

In this section, we compute the hyper Zagreb index of shell graph $C(n, n - 3)$ and shell type graph $Sh(n, k)$.

Definition 35. A shell graph $C(n, k)$ represents a cycle C_n of order n with k chords sharing a common end point called the apex.

Theorem 36. For a shell graph $C(n, n - 3)$, $HM [C(n, n - 3)] = n^3 + 3n^2 + 32n - 104$.

![Figure 6: Shell graph $C(15, 12)$ with apex v_1](image)

Proof. The proof of this result is straightforward with the help of the following edge partition of $C(n, n - 3)$.

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2, n - 1)$</td>
<td>2</td>
</tr>
<tr>
<td>$(3, n - 1)$</td>
<td>$n - 3$</td>
</tr>
<tr>
<td>$(2, 3)$</td>
<td>2</td>
</tr>
<tr>
<td>$(3, 3)$</td>
<td>$n - 4$</td>
</tr>
</tbody>
</table>

Generalizing this definition, we get the shell type graph as follows:
Definition 37. A shell type graph $Sh(n,k)$ is a graph formed using a cycle C_n of order n in which $n - 3$ paths P_k of order $k \geq 3$ share a common end point called apex.

Figure 7: Shell type graph $Sh(12,5)$ with apex v_1

Theorem 38. $HM[Sh(n,k)] = 16kn + 12n - 48k + n^2 + n^3 - 26$.

Proof. One can easily observe the following edge partition of $Sh(n,k)$.

<table>
<thead>
<tr>
<th>Edge uv with $(d(u), d(v))$</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2, 2)$</td>
<td>$(k - 3)(n - 3)$</td>
</tr>
<tr>
<td>$(2, 3)$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$(3, 3)$</td>
<td>$n - 4$</td>
</tr>
<tr>
<td>$(2, n - 1)$</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Using the above edge partition we get

\[
HM[Sh(n,k)] = (k - 3)(n - 3)(16) + 25(n - 1) + 36(n - 4) + (n - 1)(n + 1)^2
= 16kn + 12n - 48k + n^2 + n^3 - 26.
\]
2. Conclusions

The hyper Zagreb index of certain generalized graph structures such as generalized thorn graphs and generalized theta graphs are computed in this paper. Also, some cycle related graphs namely, cycle with parallel \(P_k \) chords, cycle with parallel \(C_k \) chords, shell type graphs have been studied for the first time in the area of Topological indices. However, computing reformulated Zagreb index of generalized thorn graphs and generalized theta graphs still remain open and challenging problem for researchers.

Acknowledgements

This research is supported by Natural Science Fund of Anhui Wenda University of Information Engineering (Grant No.XZR2019A10).

References

