WEAK SET-VALUED MARTINGALE DIFFERENCE
AND ITS APPLICATIONS

Abstract

The martingale difference is considered widely in finance and economic because of its application in efficient market, in which the conditional expectation $E[d_t\vert\F_{t-1}]=0$ a.s., $\forall t\ge 2$ for a sequence of asset returns $\{d_t,t\ge 1\}$ and related historical information $\F_{t-1}$. However, the concept of martingale difference in set-valued random variables (i.e. random sets) has not been studied. This paper proves some properties of a set-valued random variable sequence called a weak set-valued martingale difference. By studying its characteristic properties, we propose a method of testing the weak set-valued martingale difference hypothesis and perform some simulations with real data.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 3
Year: 2022

DOI: 10.12732/ijam.v35i3.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Adly, E. Ernst, M. Th´era, On the closedness of the algebraic difference of closed convex sets, Journal de math´ematiques pures et appliqu´ees, 82, No 9 (2003), 1219-1249.
  2. [2] R. Aumann, Integrals of set-valued functions, Journal of Mathematical Analysis and Applications, 12, No 1 (1965), 1-12.
  3. [3] Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, 29, No 4 (2001), 1165- 1188.
  4. [4] G. E. P. Box, D. A. Pierce, Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American Statistical Association, 65, No 332 (1970), 1509-1526.
  5. [5] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Vol. 580 of Lecture Notes in Mathematics, Springer, Berlin-Heidelberg (1977).
  6. [6] C. Castaing, N. V. Quang, N. T. Thuan, A new family of convex weakly compact valued random variables in banach space and applications to laws of large numbers, Statistics & Probability Letters, 82, No 1 (2012), 84-95.
  7. [7] I. Castro-Conde, J. de U˜na-´ Alvarez, An r package for multiple testing problems, R Journal, 6, No 2 (2014), 96-113.
  8. [8] A. Dabney, J. D. Storey, The qvalue package, Medicine, 344 (2006), 539- 548.
  9. [9] W. Deng, G. Wang, X. Zhang, J. Xu, G. Li, A multi-granularity combined prediction model based on fuzzy trend forecasting and particle swarm techniques, Neurocomputing, 173 (2016), 1671-1682.
  10. [10] M. A. Dom´ınguez, I. N. Lobato, Testing the martingale difference hypothesis, Econometric Reviews, 22, No 4 (2003), 351-377.
  11. [11] E. Egrioglu, E. Bas, U. Yolcu, M. Y. Chen, Picture fuzzy time series: Defining, modeling and creating a new forecasting method, Engineering Applications of Artificial Intelligence, 88 (2020), 1-15.
  12. [12] J. C. Escanciano, I. N. Lobato, Testing the martingale hypothesis, In: Palgrave Handbook of Econometrics, 972-1003, Springer (2009).
  13. [13] J. C. Escanciano, C. Velasco, Generalized spectral tests for the martingale difference hypothesis, Journal of Econometrics, 134, No 1 (2006), 151-185.
  14. [14] F. Ezzaki, Mosco convergence of multivalued SLLN, Vietnam Journal of Mathematics, 24, No 4 (1996), 399-416.
  15. [15] F. Ezzaki, K. Tahri, Representation theorem of set valued regular martingale: Application to the convergence of set-valued martingale, Statistics & Probability Letters, 154 (2019), Art. 108548.
  16. [16] E. F. Fama, Efficient capital markets: A review of theory and empirical work, The Journal of Finance, 25, No 2 (1970), 383-417.
  17. [17] E. Frichot, O. Fran¸cois, Lea: An r package for landscape and ecological association studies, Methods in Ecology and Evolution, 6, No 8 (2015), 925-929.
  18. [18] M. R. Hassan, K. Ramamohanarao, J. Kamruzzaman, M. Rahman, M. M. Hossain, A hmm-based adaptive fuzzy inference system for stock market forecasting, Neurocomputing, 104 (2013), 10-25.
  19. [19] Y. Hong, On computing the distribution function for the poisson binomial distribution, Computational Statistics & Data Analysis, 59 (2013), 41-51.
  20. [20] D. X. Ky, L. T. Tuyen, A Markov-fuzzy combination model for stock market forecasting, International Journal of Applied Mathematics and Statistics, 55, No 3 (2016), 109-121.
  21. [21] D. X. Ky, L. T. Tuyen, A higher order Markov model for time series forecasting, International Journal of Applied Mathematics and Statistics, 57, No 3 (2018), 1-18.
  22. [22] S. Li, Y. Ogura, V. Kreinovich, Limit Theorems and Applications of Setvalued and Fuzzy Set-valued Random Variables, Vol. 43 of Theory and Decision Library B, Springer, Netherlands (2002).
  23. [23] G. M. Ljung, G. EP. Box, On a measure of lack of fit in time series models, Biometrika, 65, No 2 (1978), 297-303.
  24. [24] I. S. Molchanov, Theory of Random Sets, Vol. 87 of Probability Theory and Stochastic Modelling, Springer-Verlag, London, 2nd Ed.( 2017.)
  25. [25] H. Oulghazi, F. Ezzaki, Strong law of large numbers for adapted sequences and application to multivalued supermartingale, Lobachevskii Journal of Mathematics, 41, No 3 (2020), 407-415.
  26. [26] S. Panigrahi, H. S. Behera, A study on leading machine learning techniques for high order fuzzy time series forecasting, Engineering Applications of Artificial Intelligence, 87 (2020), 1-10.
  27. [27] H. W. Peng, S. F. Wu, C. C. Wei, S. J. Lee, Time series forecasting with a neuro-fuzzy modeling scheme, Applied Soft Computing, 32 (2015), 481- 493.
  28. [28] S. Pounds, D. Fofana, Hybridmtest: hybrid multiple testing, R package Version 1.32.0 (2020).
  29. [29] L. T. Tuyen, On the testing multi-valued martingale difference hypothesis, Journal of Computer Science and Cybernetics, 34, No 3 (2018), 233-248.
  30. [30] L. T. Tuyen, A strong law of large numbers for sequences of set-valued random variables with a martingale difference selection, International Journal of Applied Mathematics and Statistics, 59, No 2 (2020), 69-80.
  31. [31] L. T. Tuyen, N. V. Hung, T. T. Ninh, P. Q. Vuong, N. M. Duc, D. X. Ky, A normal-hidden markov model model in forecasting stock index, Journal of Computer Science and Cybernetics, 28, No 3 (2012), 206-216.
  32. [32] N. V. Quang, N. T. Thuan, Strong laws of large numbers for adapted arrays of set-valued and fuzzy-valued random variables in banach space, Fuzzy Sets and Systems, 209 (2012), 14-32.
  33. [33] R. K. Wadhera, K. E. Maddox, J. H. Wasfy, S. Haneuse, C. Shen, R. W. Yeh, Association of the hospital readmissions reduction program with mortality among medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, and pneumonia, Jama, 320, No 24 (2018), 2542- 2552.
  34. [34] A. S. Whittemore, A bayesian false discovery rate for multiple testing, Journal of Applied Statistics, 34, No 1 (2007), 1-9.
  35. [35] A. P. Wingo, E. B. Dammer, M. S. Breen, B. A. Logsdon, D. M. Duong, J. C. Troncosco, M. Thambisetty, T. G. Beach, G. E. Serrano, E. M. Reiman, et al, Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age, Nature Communications, 10, No 1 (2019), 1-14.
  36. [36] D. Zhang, X. Zhang, Study on forecasting the stock market trend based on stochastic analysis method, International Journal of Business and Management, 4, No 6 (2009), 163-170.