ON A TIME-NONLOCAL BOUNDARY VALUE PROBLEM

FOR TIME-FRACTIONAL PARTIAL

DIFFERENTIAL EQUATION

FOR TIME-FRACTIONAL PARTIAL

DIFFERENTIAL EQUATION

E. Karimov^{1}, B. Toshtemirov^{2}

^{1} Fergana State University

Fergana - 150100, UZBEKISTAN

and

V. I. Romanovskiy Institute of Mathematics

Tashkent - 100174, UZBEKISTAN

^{2} V. I. Romanovskiy Institute of Mathematics,

Tashkent - 100174, UZBEKISTAN

and

Ghent University

Ghent - 9000, BELGIUM

Fergana - 150100, UZBEKISTAN

and

V. I. Romanovskiy Institute of Mathematics

Tashkent - 100174, UZBEKISTAN

Tashkent - 100174, UZBEKISTAN

and

Ghent University

Ghent - 9000, BELGIUM

Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

- [1] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, No 3 (2011), 1140–1153.
- [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).
- [3] M. M. Dzhrbashyan, A. B. Nersesyan, Fractional derivatives and the Cauchy problem for fractional differential equations, Izv. Akad. Nauk Armyan. SSR., 3, No 1 (1968), 3–29.
- [4] M. M. Dzherbashian, A. B. Nersesian, Fractional derivatives and Cauchy problem for differential equations of fractional order, Fract. Calc. Appl. Anal., 23, No 6 (2020), 1810-1836; DOI: 10.1515/fca-2020-0090.
- [5] N. Al-Salti, E. Karimov, Inverse source problems for degenerate timefractional PDE, Progr. Fract. Differ. Appl., 8, No 1 (2022), 39-52.
- [6] F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill, New York (1965).
- [7] C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195 (1995), 702–718.
- [8] N. H. Tuan, N. A. Triet, N. H. Luc, N. D. Phuong, On a time fractional diffusion with nonlocal in time conditions, Adv. Differ. Equ., 204 (2021), 1–14.
- [9] A. O. Ashyralyev, A. Hanalyev, P. E. Sobolevskii, Coercive solvability of nonlocal boundary value problem for parabolic equations, Abstr. Appl. Anal. 6 (2001), 53–61.
- [10] R. Ashurov, Y. Fayziev, On the nonlocal problems in time for timefractional subdiffusion equations, Fractal Fract. 6, No 41 (2022), 1-21.
- [11] E. Karimov, M. Mamchuev, M. Ruzhansky, Non-local initial problem for second order time-fractional and space-singular equation, Hokkaido Math. J., 49 (2020), 349-361.
- [12] M. Ruzhansky, N. Tokmagambetov, B. Torebek, On a non–local problem for a multi–term fractional diffusion-wave equation, Fract. Calc. Appl. Anal. 23, No 2 (2020), 324-355; DOI: 10.1515/fca-2020-0016.
- [13] V. M. Bulavatsky, Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative, Cybernetics and Systems Analysis, 30, No 4 (2014), 570-577.
- [14] E. Karimov, M Ruzhansky, B Toshtemirov, Solvability of the boundaryvalue problem for a mixed equation involving hyper-Bessel fractional differential operator and bi-ordinal Hilfer fractional derivative, Math. Meth. Appl. Sci., (2022), 1-17; DOI: 10.1002/mma.8491.
- [15] V. M. Bulavatsky, Some nonlocal boundary-value problems for the biparabolic evolution equation and its fractional-differential analog, Cybernetics and Systems Analysis, 55 (2019), 796–804.
- [16] Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations, Acta Math. Vietnam., 24 (1999), 207-234.
- [17] W. Kaplan, Advanced Calculus, 5th Edition, Pearson (2002).
- [18] A. V. Pskhu, Partial Differential Equations of Fractional Order, Moscow, Nauka (2005) (In Russian).
- [19] L. Boudabsa, T. Simon, Some properties of the Kilbas-Saigo function, Mathematics, 9, No 3 (2021), 217; DOI: 10.3390/math9030217.
- [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).