APPLICATIONS OF FUZZY SETS FOR

ALMOSTITY OF TERNARY SUBSEMIRINGS

ALMOSTITY OF TERNARY SUBSEMIRINGS

Napaporn Sarasit^{1}, Ronnason Chinram^{2},

Amornrat Rattana^{2}

^{1} Division of Mathematics, Faculty of Engineering

Rajamangala University of Technology Isan Khon Kaen Campus

Khon Kaen - 40000, THAILAND

^{2} Division of Computational Science, Faculty of Science

Prince of Songkla University

Hat Yai, Songkhla - 90110, THAILAND

Amornrat Rattana

Rajamangala University of Technology Isan Khon Kaen Campus

Khon Kaen - 40000, THAILAND

Prince of Songkla University

Hat Yai, Songkhla - 90110, THAILAND

Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

- [1] S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular ternary semirings in terms of bipolar fuzzy ideals, Comput. Applied Math., 39, No 4 (2020), 319.
- [2] R. Chinram, S. Kaewchay, A. Iampan, P. Singavananda, Characterization of almost ternary subsemigroups and their fuzzifications, J. Math. Comput. Sci., 27 (2022), 97–104.
- [3] R. Chinram, S. Malee, L-Fuzzy ternary subsemirings and L-Fuzzy ideals in ternary semirings, IAENG Int. J. Applied Math., 40, No 3 (2010), Art. 03.
- [4] V.R. Daddi, Y.S. Pawar, Generalized semi-ideals in ternary semirings, Novi Sad J. Math., 41, No 2 (2011), 81–87.
- [5] M.K. Dubey, Anuradha, A note on prime quasi-ideals in ternary semirings, Kragujevac J. Math., 37, No 2 (2013), 361–367.
- [6] T. K. Dutta, S. Kar, A note on regular ternary semirings, Kyungpook Math. J., 46 (2006), 357–365.
- [7] B. Elavarasan, K. Porselvi, Prime bi-ideals in ordered ternary semirings, Int. J. Math. Comput. Sci., 14, No 4 (2019), 929–933.
- [8] A. Iampan, R. Chinram, P. Petchkaew, A note on almost subsemigroups of semigroups, Int. J. Math. Comput. Sci., 16, No 4 (2021), 1623–1629.
- [9] E. Kanser, An extension of the group concept, Bull. Amer. Math. Soc., 10 (1904), 290–291.
- [10] S. Kar, On quasi-ideals and Bi-ideals in ternary semirings, Int. J. Math. Math. Sci., 18 (2005), 3015–3023.
- [11] S. Kar, A. Shikari, Soft Ternary Semirings, Fuzzy Inform. Engineering, 8, No 1 (2016), 1–15.
- [12] J. Kavikumar, A.B. Khamis, Fuzzy ideals and fuzzy quasi-ideals in ternary semirings, IAENG Int. J. Applied Math., 37, No 2 (2007), Art. 06.
- [13] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Syst., 5, No 2 (1981), 203–215.
- [14] D.H. Lehmer, A ternary analogue of Abelian groups, Amer. J. Math., 54 (1932), 329–338.
- [15] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971), 37–55.
- [16] S. Malee, R. Chinram, k-Fuzzy ideals of ternary semirings, Int. J. Comput. Math. Sci., 4, No 4 (2010), 206–210.
- [17] G. Muhiuddin, J. Catherine Grace John, B. Elavarasan, K. Porselvi, D. Al-Kadi, Properties of k-hybrid ideals in ternary semiring, J. Intel. Fuzzy Syst., 42, No 6 (2022), 5799–5807.
- [18] E.H. Prufer, Theory of abelian Groups-I, Maths. Z., 20 (1924), 165–187.
- [19] D.M. Rao, G.S. Rao, A study on ternary semirings, Int. J. Math. Archive., 5, No 12 (2014), 24–30.
- [20] R. Rittichuai, A. Iampan, R. Chinram, P. Singavananda, Almost subsemir- ings and fuzzifications, Int. J. Math. Comput. Sci., 17, No 4 (2022), 1491– 1497.
- [21] A. Rosenfeld, Fuzzy groups. J. Math. Anal. Appl., 35 (1971), 512–517.
- [22] P. Yiarayong, On weakly completely quasi primary and completely quasi primary ideals in ternary semirings, Commun. Korean Math. Soc., 31, No 4 (2016), 657–665.
- [23] L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.