ON THE BOUNDEDNESS OF DUNKL-TYPE MAXIMAL COMMUTATORS IN THE DUNKL-TYPE MODIFIED MORREY SPACES

Samira A. Hasanli
Nakhchivan State University
Nakhchivan City, AZ 7012, AZERBAIJAN

Abstract: In this paper we consider the generalized shift operator, associated with the Dunkl operator and we investigate maximal commutators, commutators of singular integral operators and commutators of the fractional integral operators associated with the generalized shift operator.

The boundedness of the Dunkl-type maximal commutator $M_{b,\alpha}$ from the Dunkl-type modified Morrey space $\tilde{M}_{p,\lambda,\alpha}(\mathbb{R})$ to $\tilde{M}_{p,\lambda,\alpha}(\mathbb{R})$ for all $1 < p < \infty$ when $b \in BMO_{\alpha}(\mathbb{R})$ are proved.

AMS Subject Classification: 42B20, 42B25, 42B35

Key Words: commutator; generalized shift operator; Dunkl-type maximal function; Dunkl-type Morrey space; Dunkl-type modified Morrey space; BMO_{α} space

1. Introduction

In the theory of partial differential equations, together with weighted $L_{p,w}(\mathbb{R}^n)$ spaces, the Morrey spaces $\mathcal{M}_{p,\lambda}(\mathbb{R}^n)$ play an important role. The Morrey spaces were introduced by C.B. Morrey in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations (see [19]).

For $x \in \mathbb{R}^n$ and $t > 0$, let $B(x,t)$ denote the open ball centered at x of radius t.

Received: February 22, 2020 © 2020 Academic Publications
One of the most important variants of the Hardy-Littlewood maximal function defined by the formula

$$Mf(x) = \sup_{t>0} |B(x,t)|^{-1} \int_{B(x,t)} |f(y)|dy,$$

where $|B(x,t)|$ is the Lebesgue measure of the ball $B(x,t)$.

The operators M_α and I_α play important role in real and harmonic analysis (see, for example [23]).

Definition 1. Let $1 \leq p < \infty$, $0 \leq \lambda \leq n$ and $[t]_1 = \min\{1, t\}$. We denote by $\mathcal{M}_{p,\lambda}(\mathbb{R}^n)$ Morrey space, and by $\tilde{\mathcal{M}}_{p,\lambda}(\mathbb{R}^n)$ the modified Morrey space, the set of locally integrable functions $f(x), x \in \mathbb{R}^n$, with the finite norms

$$\|f\|_{\mathcal{M}_{p,\lambda}} = \sup_{x \in \mathbb{R}^n, t>0} \left(t^{-\lambda} \int_{B(x,t)} |f(y)|^p dy \right)^{1/p},$$

$$\|f\|_{\tilde{\mathcal{M}}_{p,\lambda}} = \sup_{x \in \mathbb{R}^n, t>0} \left([t]_{1}^{-\lambda} \int_{B(x,t)} |f(y)|^p dy \right)^{1/p},$$

respectively.

Note that

$$\tilde{\mathcal{M}}_{p,0}(\mathbb{R}^n) = \mathcal{M}_{p,0}(\mathbb{R}^n) = L_p(\mathbb{R}^n),$$

$$\tilde{\mathcal{M}}_{p,\lambda}(\mathbb{R}^n) = \mathcal{M}_{p,\lambda}(\mathbb{R}^n) \cap L_p(\mathbb{R}^n)$$

and if $\lambda < 0$ or $\lambda > n$, then $\mathcal{M}_{p,\lambda}(\mathbb{R}^n) = \tilde{\mathcal{M}}_{p,\lambda}(\mathbb{R}^n) = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n.

These spaces appeared to be quite useful in the study of the local behaviour of the solutions to elliptic partial differential equations, apriori estimates and other topics in the theory of partial differential equations.

Definition 2. Let $1 \leq p < \infty, 0 \leq \lambda \leq n$. We denote by $W\mathcal{M}_{p,\lambda}(\mathbb{R}^n)$ the weak Morrey space and by $W\tilde{\mathcal{M}}_{p,\lambda}(\mathbb{R}^n)$ the modified weak Morrey space, as the space of all functions $f \in W L_p^{loc}(\mathbb{R}^n)$ with finite norms

$$\|f\|_{W\mathcal{M}_{p,\lambda}} = \sup_{r>0} \sup_{x \in \mathbb{R}^n, t>0} \left(t^{-\lambda} \{|y \in B(x,t) : |f(y)| > r\} \right)^{1/p},$$
\[\|f\|_{W \tilde{M}_{p,\lambda}} = \sup_{r>0} r \sup_{x \in \mathbb{R}^n, t>0} \left([t]_1^{\lambda} \left| \{ y \in B(x, t) : |f(y)| > r \} \right| \right)^{1/p}, \]

respectively.

Note that

\[W L_p(\mathbb{R}^n) = W M_{p,0}(\mathbb{R}^n) = W \tilde{M}_{p,0}(\mathbb{R}^n), \]

\[M_{p,\lambda}(\mathbb{R}^n) \subset W M_{p,\lambda}(\mathbb{R}^n) \quad \text{and} \quad \|f\|_{W M_{p,\lambda}} \leq \|f\|_{M_{p,\lambda}}, \]

\[\tilde{M}_{p,\lambda}(\mathbb{R}^n) \subset W \tilde{M}_{p,\lambda}(\mathbb{R}^n) \quad \text{and} \quad \|f\|_{W \tilde{M}_{p,\lambda}} \leq \|f\|_{\tilde{M}_{p,\lambda}}. \]

The commutator is defined for smooth functions \(f \) by \([b, T]f = bT(f) - T(bf)\), where \(b \) is a locally integrable function on \(\mathbb{R}^n \) and \(T \) is a Calderon-Zygmund operator. Coifman, Rochberg and Weiss [7] stated that \([b, T]\) is a bounded operator on \(L_p(\mathbb{R}^n) \), \(1 < p < \infty \), when \(b \) is a \(BMO \) function. Also, Chanillo [6] proved that commutators characterize Riesz potentials on the function space \(BMO \).

2. Definitions, notation and preliminaries

Let \(\alpha > -1/2 \) be a fixed number and \(\mu_\alpha \) be the weighted Lebesgue measure on \(R \), given by

\[d\mu_\alpha(x) := \left(2^{\alpha+1} \Gamma(\alpha + 1) \right)^{-1} |x|^{2\alpha+1} dx. \]

For every \(1 \leq p \leq \infty \), we denote by \(L_{p,\alpha}(R) = L_p(R, d\mu_\alpha) \) the spaces of complex-valued functions \(f \), measurable on \(R \) such that

\[\|f\|_{p,\alpha} \equiv \|f\|_{L_{p,\alpha}} = \left(\int_R |f(x)|^p d\mu_\alpha(x) \right)^{1/p} < \infty \quad \text{if} \quad p \in [1, \infty), \]

and

\[\|f\|_{\infty,\alpha} \equiv \|f\|_{L_\infty} = ess sup_{x \in R} |f(x)| \quad \text{if} \quad p = \infty. \]

For \(1 \leq p < \infty \) we denote by \(WL_{p,\alpha}(R) \), the weak \(L_{p,\alpha}(R) \) spaces defined as the set of locally integrable functions \(f \) with the finite norm

\[\|f\|_{WL_{p,\alpha}} = \sup_{r>0} r \left(\mu_\alpha \{ x \in R : |f(x)| > r \} \right)^{1/p}. \]

Note that

\[L_{p,\alpha} \subset WL_{p,\alpha} \quad \text{and} \quad \|f\|_{WL_{p,\alpha}} \leq \|f\|_{p,\alpha} \quad \text{for all} \quad f \in L_{p,\alpha}(R). \]
Let $B(x, t) = \{ y \in \mathbb{R} : |y| \leq \max\{0, |x| - t\}, |x| + t\}$ and $B_t \equiv B(0, t) = [0, t]$, $t > 0$. Then
\[\mu_\alpha B_t = b_\alpha t^{2\alpha + 2}, \]
where $b_\alpha = \left[2^{\alpha+1} (\alpha + 1) \Gamma(\alpha + 1)\right]^{-1}$.

Let $L_{p, \omega, \alpha}(\mathbb{R})$ be the space of measurable functions on \mathbb{R} with finite norm
\[\|f\|_{L_{p, \omega, \alpha}} = \left(\int_{\mathbb{R}} |f(x)|^p \omega(x) d\mu_\alpha(x)\right)^{1/p}, \quad 1 \leq p < \infty \]
and for $p = \infty$ the space $L_{\infty, \omega, \alpha}(\mathbb{R}) = L_{\infty}(\mathbb{R})$.

Definition 3. The weight function ω belongs to the class $A_{p, \alpha}(\mathbb{R})$ for $1 \leq p < \infty$, if the following statement
\[\int_{B(x, r)} \omega(y) d\mu_\alpha(y) \left(\int_{B(x, r)} \omega^{-\frac{1}{p-1}}(y) d\mu_\alpha(y)\right)^{p-1} \leq (\mu_\alpha B(x, r))^p \]
is finite and ω belongs to $A_{1, \alpha}(\mathbb{R})$, if there exists a positive constant C such that for any $x \in \mathbb{R}$ and $r > 0$
\[\frac{1}{\mu_\alpha B(x, r)} \int_{B(x, r)} \omega(y) d\mu_\alpha(y) \leq C \text{ ess sup}_{y \in B(x, r)} \frac{1}{\omega(y)}. \]

Definition 4. Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$. We denote by $M_{p, \lambda, \alpha}(\mathbb{R})$ Dunkl-type Morrey space ($\equiv D$-Morrey space) as the set of locally integrable functions $f(x), x \in \mathbb{R}$, with the finite norm
\[\|f\|_{M_{p, \lambda, \alpha}} = \sup_{t > 0, x \in \mathbb{R}} \left(t^{-\lambda} \int_{B_t} [\tau_x |f(y)|] d\mu_\alpha(y)\right)^{1/p}. \]

Definition 5. Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$ and $[t]_1 = \min\{1, t\}$. We denote by $\tilde{M}_{p, \lambda, \alpha}(\mathbb{R})$ the Dunkl-type modified Morrey space as the set of locally integrable functions $f(x), x \in \mathbb{R}$, with finite norm
\[\|f\|_{\tilde{M}_{p, \lambda, \alpha}} = \sup_{t > 0, x \in \mathbb{R}} \left([t]_{1}^{-\lambda} \int_{B_t} [\tau_x |f(y)|] d\mu_\alpha(y)\right)^{1/p}. \]

Definition 6. Let $1 \leq p < \infty$ and $0 \leq \lambda \leq 2\alpha + 2$. A measurable function \tilde{f} on \mathbb{R} is said to belong to the Dunkl-type modified weak Morrey space $W_{\tilde{M}_{p, \lambda, \alpha}}(\mathbb{R})$ if the quasi-norm
\[\|f\|_{W, \tilde{M}, p, \lambda, x} = \sup_{r>0} \sup_{t>0, x \in \mathbb{R}} \left(\left[t \right]^{-\lambda} \int_{\{y \in B_t : \tau_x |f(y)|\}} d\mu_\alpha(y) \right)^{1/p} \]

is finite.

Let \(M^\sharp_\alpha f(x)\) be the Dunkl-type sharp maximal function defined by

\[M^\sharp_\alpha f(x) = \sup_{r>0} \frac{1}{\mu_\alpha B_r} \int_{B_r} |\tau_x f(y) - f_{B_r}(x)| \, d\mu_\alpha(y), \]

where \(f_{B_r}(x) = \frac{1}{\mu_\alpha B_r} \int_{B_r} \tau_x f(y) \, d\mu_\alpha(y)\).

We denote by \(BMO_\alpha(R)\) (Dunkl-type \(BMO\) space) the set of locally integrable functions \(f\) with finite norm

\[\|f\|_{BMO_\alpha} = \sup_{r>0, x \in \mathbb{R}} \frac{1}{\mu_\alpha B_r} \int_{B_r} |\tau_x f(y) - f_{B_r}(x)| \, d\mu_\alpha(y) < \infty, \]

or

\[\|f\|_{BMO_\alpha} = \inf_C \sup_{r>0, x \in \mathbb{R}} \frac{1}{\mu_\alpha B_r} \int_{B_r} |\tau_x f(y) - C| \, d\mu_\alpha(y). \]

Theorem 7. ([17]) 1) Let \(f \in L^1_{loc}(\mathbb{R})\). If

\[\sup_{t>0, x \in \mathbb{R}} \left(\frac{\mu_\alpha(B_t)^{-1}}{B_t} \int_{B_t} |\tau_y f(x) - f_{B_t}|^p \, d\mu_\alpha(y) \right)^{1/p} = \|f\|_{BMO_{p, \alpha}} < \infty, \]

then for any \(1 < p < \infty\),

\[\|f\|_{BMO_\alpha} \leq \|f\|_{BMO_{p, \alpha}} \leq A_p \|f\|_{BMO_\alpha}, \]

where the constant \(A_p\) depends only on \(p\).

2) Let \(f \in BMO_\alpha(R)\). Then, there is a constant \(C > 0\) such that

\[|f_{B_r} - f_{B_t}| \leq C \|f\|_{BMO_\alpha} \ln \frac{t}{r}, \quad 0 < 2r < t, \]

where \(C\) is independent of \(f, x, r\) and \(t\).

For all \(x, y, z \in \mathbb{R}\), we put

\[W_\alpha(x, y, z) = (1 - \sigma_{x,y,z} + \sigma_{z,x,y} + \sigma_{z,y,x}) \Delta_\alpha(x, y, z) \]
where
\[
\sigma_{x,y,z} = \begin{cases}
\frac{x^2+y^2-z^2}{2xy} & \text{if } x, y \in R \setminus \{0\}, \\
0 & \text{otherwise},
\end{cases}
\]
and Δ_α is the Bessel kernel given by
\[
\Delta_\alpha(x, y, z) = \begin{cases}
d_\alpha \frac{([|x|+|y|]^2-z^2)[z^2-(|x|-|y|)^2]^{\alpha-1/2}}{|xyz|^{2\alpha}}, & \text{if } |z| \in A_{x,y}, \\
0, & \text{otherwise},
\end{cases}
\]
where $d_\alpha = (\Gamma(\alpha + 1))^2/(2^{\alpha-1} \sqrt{\pi} \Gamma(\alpha + \frac{1}{2}))$ and $A_{x,y} = [|x| - |y||, |x| + |y||].$

Properties 8. (see Rösler [24]) The signed kernel W_α is even with respect to all variables and satisfies the following properties
\[
W_\alpha(x, y, z) = W_\alpha(y, x, z) = W_\alpha(-x, z, y),
\]
\[
W_\alpha(x, y, z) = W_\alpha(-z, y, -x) = W_\alpha(-x, -y, -z)
\]
and
\[
\int_R |W_\alpha(x, y, z)| \, d\mu_\alpha(z) \leq 4.
\]

In the sequel we consider the signed measure $\nu_{x,y}$, on R, given by
\[
\nu_{x,y} = \begin{cases}
W_\alpha(x, y, z) \, d\mu_\alpha(z) & \text{if } x, y \in R \setminus \{0\}, \\
d\delta_x(z) & \text{if } y = 0, \\
d\delta_y(z) & \text{if } x = 0.
\end{cases}
\]

Definition 9. For $x, y \in R$ and f a continuous function on R, we put
\[
\tau_x f(y) = \int_R f(z) \, d\nu_{x,y}(z).
\]

The operators τ_x, $x \in R$, are called Dunkl translation operators on R and it can be expressed in the following form (see [24])
\[
\tau_x f(y) = c_\alpha \int_0^\pi f_e ((x, y)\theta) \, h_1(x, y, \theta)(\sin \theta)^{2\alpha} \, d\theta \\
+ c_\alpha \int_0^\pi f_o ((x, y)\theta) \, h_2(x, y, \theta)(\sin \theta)^{2\alpha} \, d\theta,
\]
where \((x, y)_\theta = \sqrt{x^2 + y^2 - 2|xy|\cos \theta}\), \(f = f_e + f_o\), \(f_o\) and \(f_e\) being respectively the odd and the even parts of \(f\), with
\[
c_\alpha \equiv \left(\int_0^\pi (\sin \theta)^{2\alpha} d\theta \right)^{-1} = \frac{\Gamma(\alpha + 1)}{\sqrt{\pi} \Gamma(\alpha + 1/2)},
\]
\[
h_1(x, y, \theta) = 1 - \text{sgn}(xy)\cos \theta,
\]
and
\[
h_2(x, y, \theta) = \begin{cases}
\frac{(x+y)[1-\text{sgn}(xy)\cos \theta]}{(x,y)_\theta}, & \text{if } xy \neq 0, \\
0, & \text{if } xy = 0.
\end{cases}
\]

Using the change of variable \(z = (x, y)_\theta\), we have also (see [3])
\[
\tau_x f(y) = c_\alpha \int_0^\pi \left\{ f((x, y)_\theta) + f(-(x, y)_\theta) + \frac{x + y}{(x, y)_\theta} [f((x, y)_\theta) - f(-(x, y)_\theta)] \right\} (1 - \cos \theta)(\sin \theta)^{2\alpha} d\theta.
\]

Now we define the Dunkl-type maximal function by
\[
M_\alpha f(x) = \sup_{r>0} \left(\mu_\alpha B_r \right)^{-1} \int_{B_r} \tau_x |f(y)| d\mu_\alpha(y).
\]

Theorem 10. ([11])
1. If \(f \in L_{1,\omega,\alpha}(R)\) and \(\omega \in A_{1,\alpha}(R)\), then \(M_\alpha f \in WL_{1,\omega,\alpha}(R)\) and
\[
\|M_\alpha f\|_{WL_{1,\omega,\alpha}} \leq C_{1,\alpha} \|f\|_{L_{1,\omega,\alpha}},
\]
where \(C_{1,\alpha}\) depends only on \(\alpha\).
2. If \(f \in L_{p,\omega,\alpha}(R)\), \(1 < p < \infty\) and \(\omega \in A_{p,\alpha}(R)\), then \(M_\alpha f \in L_{p,\omega,\alpha}(R)\) and
\[
\|M_\alpha f\|_{L_{p,\omega,\alpha}} \leq C_{p,\alpha} \|f\|_{L_{p,\omega,\alpha}},
\]
where \(C_{p,\alpha}\) depends only on \(p, \alpha\).

Theorem 11. ([13])
1. If \(f \in M_{1,\lambda,\alpha}(R)\), \(0 \leq \lambda < 2\alpha + 2\), then \(M_\alpha f \in W M_{1,\lambda,\alpha}(R)\) and
\[
\|M_\alpha f\|_{W M_{1,\lambda,\alpha}} \leq C_{1,\lambda,\alpha} \|f\|_{M_{1,\lambda,\alpha}},
\]
where \(C_{1,\lambda,\alpha}\) depends only on \(\lambda, \alpha\) and \(n\).
2. If \(f \in M_{p,\lambda,\alpha}(R)\), \(1 < p < \infty\), \(0 \leq \lambda < 2\alpha + 2\), then \(M_\alpha f \in M_{p,\lambda,\alpha}(R)\) and
\[
\|M_\alpha f\|_{M_{p,\lambda,\alpha}} \leq C_{p,\lambda,\alpha} \|f\|_{M_{p,\lambda,\alpha}},
\]
where \(C_{p,\lambda,\alpha}\) depends only on \(p, \lambda, \alpha\) and \(n\).
For a real parameter $\alpha \geq -1/2$, we consider the Dunkl operator, associated with the reflection group Z_2 on R:

$$\Lambda_\alpha(f)(x) = \frac{d}{dx}f(x) + \frac{2\alpha + 1}{x} \left(\frac{f(x) - f(-x)}{2} \right). \tag{2.1}$$

Note that $\Lambda_{-1/2} = d/dx$.

For $\alpha \geq -1/2$ and $\lambda \in C$, the initial value problem:

$$\Lambda_\alpha(f)(x) = \lambda f(x), \quad f(0) = 1, \quad x \in R$$

has a unique solution $E_\alpha(\lambda x)$ called Dunkl kernel [8, 20, 26] and given by

$$E_\alpha(\lambda x) = j_\alpha(i\lambda x) + \frac{\lambda x}{2(\alpha + 1)} j_{\alpha+1}(i\lambda x), \quad x \in R,$$

where j_α is the normalized Bessel function of the first kind and order α [27], defined by

$$j_\alpha(z) = 2^\alpha \Gamma(\alpha + 1) \frac{J_\alpha(z)}{z^\alpha} = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \alpha(n + \alpha + 1)}, \quad z \in C.$$

We can write for $x \in R$ and $\lambda \in C$ (see Rösler [24], p. 295)

$$E_\alpha(-i\lambda x) = \frac{\Gamma(\alpha + 1)}{\sqrt{\pi} \Gamma(\alpha + 1/2)} \int_{-1}^{1} (1 - t^2)^{\alpha-1/2} (1 - t) e^{i\lambda xt} dt.$$

Note that $E_{-1/2}(\lambda x) = e^{\lambda x}$.

The Dunkl transform \mathcal{F}_α of a function $f \in L_{1,\alpha}(R)$, is given by

$$\mathcal{F}_\alpha f(\lambda) := \int_{R} E_\alpha(-i\lambda x) f(x) d\mu_\alpha(x), \quad \lambda \in R.$$

Here the integral makes sense since $|E_\alpha(ix)| \leq 1$ for every $x \in R$ [24], p. 295.

Note that $\mathcal{F}_{-1/2}$ agrees with the classical Fourier transform \mathcal{F}, given by:

$$\mathcal{F} f(\lambda) := (2\pi)^{-1/2} \int_{R} e^{-i\lambda x} f(x) dx, \quad \lambda \in R.$$

Proposition 12. (see Soltani [21])

(i) If f is an even positive continuous function, then $\tau_x f$ is positive.

(ii) For all $x \in R$ the operator τ_x extends to $L_{p,\alpha}(R)$, $p \geq 1$ and we have for $f \in L_{p,\alpha}(R)$,

$$\|\tau_x f\|_{p,\alpha} \leq 4\|f\|_{p,\alpha}. \tag{2.2}$$

(iii) For all x, $\lambda \in R$ and $f \in L_{1,\alpha}(R)$, we have

$$\mathcal{F}_\alpha (\tau_x f)(\lambda) = E_\alpha(i\lambda x) \mathcal{F}_\alpha f(\lambda).$$
Let f and g be two continuous functions on \mathbb{R} with compact support. We define the generalized convolution $*_{\alpha}$ of f and g by

$$f *_{\alpha} g(x) := \int_{\mathbb{R}} \tau_x f(-y) g(y) \, d\mu_{\alpha}(y), \quad x \in \mathbb{R}.$$

The generalized convolution $*_{\alpha}$ is associative and commutative [24]. Note that $*_{-1/2}$ agrees with the standard convolution $*$.

Proposition 13. (see Soltani [21])

(i) If f is an even positive function and g a positive function with compact support, then $f *_{\alpha} g$ is positive.

(ii) Assume that $p, q, r \in [1, +\infty[$ satisfying $1/p + 1/q = 1 + 1/r$ (the Young condition). Then the map $(f, g) \mapsto f *_{\alpha} g$, defined on $E_c \times E_c$, extends to a continuous map from $L_{p,\alpha}(\mathbb{R}) \times L_{q,\alpha}(\mathbb{R})$ to $L_{r,\alpha}(\mathbb{R})$, and we have

$$\|f *_{\alpha} g\|_{r,\alpha} \leq 4 \|f\|_{p,\alpha} \|g\|_{q,\alpha}.$$

(iii) For all $f \in L_{1,\alpha}(\mathbb{R})$ and $g \in L_{2,\alpha}(\mathbb{R})$, we have

$$\mathcal{F}_{\alpha} (f *_{\alpha} g) = (\mathcal{F}_{\alpha} f) \, (\mathcal{F}_{\alpha} g).$$

3. Main results and proofs

3.1. Maximal commutators in Dunkl-type modified Morrey spaces

The commutator generated by the Dunkl-type maximal operator M_{α} for a given measurable function b is formally defined by

$$[M_{\alpha}, b]f = M_{\alpha}(bf) - bM_{\alpha}(f)$$

and for a given measurable function b, the Dunkl-type maximal commutator is defined by

$$M_{b,\alpha}(f)(x) := \sup_{r>0} \frac{1}{\mu_{\alpha}(B_r)} \int_{B_r} \tau_y |(b(x) - b(y))f(x)| \, d\mu_{\alpha}(y)$$

for all $x \in \mathbb{R}$.
Lemma 14. Let $1 < s < \infty$ and $b \in BMO(R)$. Then there exists $C > 0$ such that for all $x \in R$

$$M^\#_\alpha(M_{b,\alpha}f)(x) \leq C\|b\|_{BMO_\alpha}\left((M_\alpha(M_\alpha f)^s)^\frac{1}{s}(x) + M_\alpha(M_\alpha |f|^s)^\frac{1}{s}(x)\right)$$

holds.

Proof. From the boundedness of the Dunkl-type maximal operator M_α and the pointwise inequality we have

$$M^\#_\alpha(M_{b,\alpha}f)(x) \leq 2M_\alpha(M_{b,\alpha}f)(x), \ x \in R.$$

Since $M_{b,\alpha}(f)(y) = \sup_{t > 0} M_{b,t,\gamma}(f)(y)$ we get

$$M_{b,t,\gamma}(f)(y) = \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_y(|b(y) - b(z)||f(z)|)d\mu_\alpha(z)$$

$$\leq \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_y(|b(z) - b|_B||f(z)|)d\mu_\alpha(z)$$

$$+ |b(y) - b_B| \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_y(|f||z)|d\mu_\alpha(z)$$

$$\leq \frac{1}{\mu_\alpha B_t} \left(\int_{B_t} \tau_y|b(z) - b_B|^{s'}d\mu_\alpha(z)\right)^{\frac{1}{s'}} \left(\int_{B_t} \tau_y|f|^{s}d\mu_\alpha(z)\right)^{\frac{1}{s}}$$

$$+ |b(y) - b_B| \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_y(|f||z)|d\mu_\alpha(z)$$

$$\leq C\|b\|_{BMO_\alpha}(M_\alpha|f|^s)^\frac{1}{s}(y) + |b(y) - b_B| \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_y(|f||z)|d\mu_\alpha(z).$$

From the H"{o}lder inequality we have

$$\frac{1}{\mu_\alpha B_r} \int_{B_r} \tau_x \left[|b(y) - b_B| \frac{1}{\mu_\alpha B_t} \left(\int_{B_t} \tau_y(|f||z)|d\mu_\alpha(z)\right)\right]d\mu_\alpha(y)$$

$$\leq \frac{1}{\mu_\alpha B_r} \left(\int_{B_r} \tau_x |b(y) - b_B|^{s'}d\mu_\alpha(y)\right)^{\frac{1}{s'}} \left(\int_{B_r} \tau_x (M_\alpha f)^s(y)d\mu_\alpha(y)\right)^{\frac{1}{s}}$$
\[
+ \frac{1}{\mu_\alpha B_r} \int_{B_r} \tau_x [\|b_{B_r} - b_{B_r}^\alpha |M_\alpha f(y)|] d\mu_\alpha(y) \\
\leq C \|b\|_{BMO_\alpha} (M_\alpha(M_\alpha f)^s)^{\frac{1}{s}}(x).
\]

Therefore we get
\[
M_\alpha(M_{b,\alpha} f)(x) = \sup_{r > 0} \frac{1}{\mu_\alpha B_r} \int_{B_r} \tau_x [M_{b,\alpha} f](y) d\mu_\alpha(y) \\
\leq C \|b\|_{BMO_\alpha} \left((M_\alpha(M_\alpha f)^s)^{\frac{1}{s}}(x) \\
+ \sup_{r > 0} \frac{1}{\mu_\alpha B_r} \int_{B_r} \tau_x (M_\alpha |f|^s)^{\frac{1}{s}}(y) d\mu_\alpha(y) \right) \\
\leq C \|b\|_{BMO_\alpha} \left((M_\alpha(M_\alpha f)^s)^{\frac{1}{s}}(x) + M_\alpha(M_\alpha |f|^s)^{\frac{1}{s}}(x) \right).
\]

Thus Lemma 14 is proved.

Proposition 3.1. ([15]) For all weights \(\omega \) and all nonnegative function \(f \) satisfying \(\nu(\{x \in X : f(x) > \beta\}) < \infty \) for all \(\beta > 0 \), there exists a positive constant \(C \) such that
1. If \(\nu(X) = \infty \), then
\[
\int_X f(y) g(y) d\nu(y) \leq C \int_X M^\sharp f(y) M g(y) d\nu(y).
\]
2. If \(\nu(X) < \infty \), then
\[
\int_X f(y) g(y) d\nu(y) \leq C \int_X M^\sharp f(y) M g(y) d\nu(y) + C g(X) \nu_X(f),
\]
where \(g \) is nonnegative function, \(g(X) = \int_X g(x) d\nu(x) \), \(\nu_X(f) = \frac{1}{\nu(X)} \int_X f(y) d\nu(y) \).

Lemma 15. Let \(1 < p < \infty \) and \(\omega \in A_{p,\alpha}(R) \). Then
\[
\|f \omega^\frac{1}{p} \|_{L_{p,\alpha}} \leq C \|\omega^\frac{1}{p} M^\sharp_{\alpha} f\|_{L_{p,\alpha}},
\]
where the constant \(C > 0 \) is independent of \(f \).
Proof. Let \((X, \nu)\) be a homogeneous type space. According to Proposition 3.1, we have
\[
\|f \omega^\frac{1}{p}\|_{L^p,\omega,\alpha} \leq C \sup_{\|g\|_{L^p,\alpha} \leq 1} \left| \int f(y)g(y) \omega^\frac{1}{p}(y)d\mu(y) \right|
\]
\[
= C \sup_{\|g\|_{L^p,\alpha} \leq 1} \left| \int f(y)g(y) \omega^\frac{1}{p}(y)d\nu(y) \right|
\]
\[
\leq C \sup_{\|g\|_{L^p,\alpha} \leq 1} \left| \int M^\sharp f(y)M(\omega^\frac{1}{p})(y)d\nu(y) \right|
\].

Hence,
\[
\|f \omega^\frac{1}{p}\|_{L^p,\alpha} \leq C \sup_{\|g\|_{L^p,\alpha} \leq 1} \left| \int M^\sharp f(y)M(\omega^\frac{1}{p})(y)d\mu(y) \right|
\]
Finally by using the Hölder inequality and Theorem 10, we get
\[
\|f \omega^\frac{1}{p}\|_{L^p,\alpha} \leq C \sup_{\|g\|_{L^p,\alpha} \leq 1} \left| \int M^\sharp f(y)M(\omega^\frac{1}{p})(y)\omega^\frac{1}{p}(y)d\nu(y) \right|
\]
\[
\leq C \sup_{\|g\|_{L^p,\alpha} \leq 1} \|M^\sharp f\|_{L^p,\alpha} \|\omega^\frac{1}{p}M\alpha(\omega^\frac{1}{p})\|_{L^p,\alpha} \leq C \|\omega^\frac{1}{p}M\alpha\|_{L^p,\alpha}
\].

Thus Lemma 15 is proved. \(\square\)

Theorem 16. Let \(b \in BMO_\alpha(R), 1 < p < \infty\) and \(\omega \in A_{p,\alpha}(R)\). Then \(M_{b,\alpha}\) is bounded on the space \(L_{p,\omega,\alpha}(R)\).

Proof. By using Lemma 14, Lemma 15 and Theorem 10, we have \(M_{b,\alpha}\) is bounded on the space \(L_{p,\omega,\alpha}(R)\). \(\square\)

The operators \(M_{b,\alpha}\) and \([M_\alpha, b]\) are essentially different from each other. For example, \(M_{b,\alpha}\) is a positive and sublinear operator, but \([M_\alpha, b]\) is neither positive nor sublinear. However, if \(b\) satisfies some additional conditions, then the operator \(M_{b,\alpha}\) is controlled by \([M_\alpha, b]\).

Theorem 17. Let \(1 < p < \infty\) and \(0 \leq \lambda < 2\alpha + 2\). Then the commutator \(M_{b,\alpha}\) is bounded on \(\tilde{M}_{p,\lambda,\alpha}(R)\) if and only if \(b \in BMO_\alpha(R)\).
Proof. Sufficiency: Let $1 < p < \infty$, $0 \leq \lambda < 2\alpha + 2$, $f \in \tilde{M}_{p,\lambda,\alpha}(R)$, $x \in R$. We have

$$
\int_{B_{t}} \tau_{y} [M_{b,\alpha} f]^{p}(x) d\mu_{\alpha}(y) \leq \int_{R} \tau_{y} [M_{b,\alpha} f]^{p}(x)(M_{\alpha} \chi_{B_{t}}(y))^{\delta} d\mu_{\alpha}(y).
$$

Taking into account the properties of $A_{p,\alpha}(R)$ we can easily see that $(M_{\alpha} \chi_{B_{t}})^{\delta} \in A_{p,\alpha}(R)$ for any $0 < \delta < 1$. Then by using Lemma 15 and Theorem 16 we obtain

$$
\int_{B_{t}} \tau_{y} [M_{b,\alpha} f]^{p}(x) d\mu_{\alpha}(y) \leq C \|b\|^{p}_{BMO_{\alpha}} \int_{R} \tau_{y} [\|f\|^{p}(x)(M_{\alpha} \chi_{B_{r}}(y))^{\theta} d\mu_{\alpha}(y)
$$

$$
\leq C \|b\|^{p}_{BMO_{\alpha}} \int_{B_{r}} \tau_{y} [\|f\|^{p}(x) d\mu_{\alpha}(y) + C \|b\|^{p}_{BMO_{\alpha}} \sum_{j=1}^{\infty} \int_{B_{2j+1} \setminus B_{2j}} \tau_{y} [\|f\|^{p}(x)(M_{\alpha} \chi_{B_{r}}(y))^{\theta} d\mu_{\alpha}(y)
$$

$$
\leq C \|b\|^{p}_{BMO_{\alpha}} \int_{B_{r}} \tau_{y} [\|f\|^{p}(x) d\mu_{\alpha}(y) + C \|b\|^{p}_{BMO_{\alpha}} \sum_{j=1}^{\infty} \int_{B_{2j+1} \setminus B_{2j}} \tau_{y} [\|f\|^{p}(x) \frac{r^{(2\alpha+2)\theta}}{|y| + r^{(2\alpha+2)\theta}} d\mu_{\alpha}(y)
$$

$$
\leq C \|b\|^{p}_{BMO_{\alpha}} \|f\|^{p}_{\tilde{M}_{p,\lambda,\alpha}} \left([r]^{\lambda}_{1} + \frac{1}{2j + 1} \sum_{j=1}^{\infty} \frac{1}{(2j+1)^{2\alpha+2}\theta} [2j+1]^{\lambda}_{1} \right)
$$

$$
\leq C \|b\|^{p}_{BMO_{\alpha}} \|f\|^{p}_{\tilde{M}_{p,\lambda,\alpha}}.
$$

Necessity: Let $M_{b,\alpha}$ be bounded from $\tilde{M}_{p,\lambda,\alpha}(R)$ to $\tilde{M}_{p,\lambda,\alpha}(R)$, $1 < p < \infty$.

Obviously,

$$
\|f\|^{p}_{\tilde{M}_{p,\lambda,\alpha}} = \sup_{t > 0, x \in R} \left(\int_{B_{t}} \tau_{y} [\|f\|^{p}(x) d\mu_{\alpha}(y) \right) \frac{1}{p}
$$
Now we consider $f = \chi_{B_r}$. It is easy to compute that

\[
\|\chi_{B_r}\|_{\widetilde{M}_{p,\lambda,\alpha}} \approx \sup_{t > 0, x \in \mathbb{R}} \left([t]_1^{-\lambda} \int_{B_t} \tau_y \chi_{B_r}(x) d\mu_\alpha(y) \right)^{1/p}
\]

\[
\approx \sup_{t > 0, x \in \mathbb{R}} \left([t]_1^{-\lambda} \int_{E(x,t)} \chi_{B_r}(y) d\mu_\alpha(y) \right)^{1/p}
\]

\[
\approx \sup_{B(x,t) \subset B_r} \left([t]_1^{-\lambda} |B(x,t) \cap B_r| \right)^{1/p} \leq |r|_1^{-\lambda} r^{2\alpha + 2}.
\]

Then

\[
\frac{1}{\mu_\alpha B_t} \int_{B_t} \left| \tau_z b(x) - f_{B_t} \right| d\mu_\alpha(z)
\]

\[
= \frac{1}{\mu_\alpha B_t} \int_{B_t} \left| \tau_z b(x) - \frac{1}{\mu_\alpha B_t} \int_{B_t} \tau_z b(y) d\mu_\alpha(y) \right| d\mu_\alpha(z)
\]

\[
\leq \frac{1}{\mu_\alpha B_t} \int_{B_t} \frac{1}{\mu_\alpha B_t} \int_{B_t} |\tau_z b(x) - \tau_z b(y)| d\mu_\alpha(y) d\mu_\alpha(z)
\]

\[
\leq \frac{1}{\mu_\alpha B_t} \int_{B_t} \frac{1}{\mu_\alpha B_t} \int_{B_t} |\tau_z (b(x) - b(y))| d\mu_\alpha(y) d\mu_\alpha(z)
\]

\[
\leq \frac{1}{\mu_\alpha B_t} \int_{B_t} \frac{1}{\mu_\alpha B_t} \int_{B_t} M_{b,\alpha}(z) d\mu_\alpha(z)
\]

\[
\leq C t^{-2\alpha - 2} [t]_1^{1/\lambda} \|M_{b,\alpha}\|_{\widetilde{M}_{p,\lambda,\alpha}} \|\chi_{B_r}\|_{\widetilde{L}_{p/\lambda,\gamma}}
\]

\[
\leq C [t]_1^{-\lambda} + \lambda t^{2\alpha + 2} \|\chi_{B_r}\|_{\widetilde{L}_{p/\lambda,\gamma}} \leq C.
\]

Thus Theorem 17 is proved.

Theorem 18. Let $0 \leq \lambda < 2\alpha + 2$ and $b \in BMO_\alpha(R)$. Then the commutator $M_{b,\alpha}$ is bounded from $\widetilde{M}_{1,\lambda,\alpha}(R)$ to $W\widetilde{M}_{1,\lambda,\alpha}(R)$.

Proof. Let $0 \leq \lambda < 2\alpha + 2$ and $f \in \widetilde{M}_{1,\lambda,\alpha}(R)$. This assertion is easily obtained from the inequality $f(x) \leq M_\alpha f(x)$. Finally, by using (3.1) and Theorem 10, we get

\[
\|M_{b,\alpha} f\|_{W\widetilde{M}_{1,\lambda,\alpha}} \leq \|M_\alpha (M_{b,\alpha} f)\|_{W\widetilde{M}_{1,\lambda,\alpha}}
\]
\begin{align*}
\leq & \|b\|_{BMO} \left(M_{\alpha} (M_{\alpha} f)^{s} \right)^{\frac{1}{s}} + M_{\alpha} (M_{\alpha} |f|^{s})^{\frac{1}{s}} \|_{W_{\tilde{M}_{1,\lambda,\alpha}}} \\
\leq & \|b\|_{BMO} \|f\|_{\tilde{M}_{1,\lambda,\alpha}}.
\end{align*}

\square

References

